

GLOBAL UNCONDITIONAL BASIC INCOME

WHITE PAPER

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 2

President’s Introduction 3

Global Problems & Our Solutions 4

The blockchain
GLOBAL UNCONDITIONAL BASIC INCOME
and the crypto currency
GLOBAL

5

Presentation Of Our Offer 6

Additional Services 7

Team Members 8

Companies & Licenses 10

Conclusion 11

Appendix

The STELLAR CONSENSUS PROTOCOL (White Paper)

12

 Content

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 3

We are already in the midst of the greatest social,

economic and political upheavals since the Industrial

Revolution (mid-18th to early 19th century) and we have

to react to it in good time.

Due to many interacting and potentiating factors such as

digitization, robotics, augmented reality, artificial

intelligence, blockchain technology, the environmental

and climate situation, as well as the related financial and

social problems and the resulting politics, all of ours

professional and private life will completely change.

Therefore, more and more farsighted experts are

demanding an unconditional basic income for all.

Unfortunately, broad public opinion on this matter is due

to misunderstandings very divided and the policy reacts

as usual first to the desires of large corporations and

generally too hesitant.

That's why I decided to create a solution which would it

make possible to pay all people worldwide an

UNCONDITIONALLY BASIC INCOME.

President’s Introduction

The use of it should not only be totally free for life, but especially protect all from the biggest global problems that

await us tomorrow.

The blockchain technology and the possibility of creating a cryptocurrency based on it made this realizable all at

once. And who says that such a cryptocurrency cannot be distributed to everyone completely free of cost and effort.

As a result, I developed the blockchain, "GLOBAL UNCONDITIONAL BASIC INCOME" and the cryptocurrency

"GLOBAL" based on it.

Through the completely free distribution of the "GLOBAL" in the form of a monthly unconditional basic income to

everyone

 ° all people are guaranteed a permanent income and thus the corresponding purchasing power, even in the

 event of unemployment and loss of social support;

 ° all companies get an additional source of income and the opportunity to keep up sales, even in case of lesser

 purchase power;

 ° all are protected from a global financial crash

 and at the same time

 ° the promotion of sustainable companies, projects, products and services is given.

My mission is to attract as many people as possible, as fast as possible and of course worldwide to indirectly assist

in the urgent necessity to do all for a clean environment and a human and social future world while combining the

pleasant with the profitable.

It is my vision that as many people as possible will follow this approach, so that it will come true.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 4

Global Problems

Our Solutions

Despite the many benefits, digitization, robotics, artificial

intelligence, augmented reality, and blockchain technology

are - according to serious experts - leading to the loss of up

to 50% - of all currently known and practiced occupations.

THE HALF OF ALL PROFESSIONS!

Promises from the political side, which continue to give the

comforting message that there will appear other new jobs

meet to a lesser extent.

However, this does not change the unemployment of the

masses, because only few people are adequately trained

for the new, highly technical occupations.

Fewer jobs mean more unemployed people.

More unemployed people cause a huge reduction in

purchasing power and increased social spending, what will

lead to the damage of the already unstable global

economy.

Only an UNCONDITIONAL BASIC INCOME, which is

distributed to all people worldwide can prevent these

problems.

The monthly unconditional basic income based on our

crypto currency GLOBAL we pay to all people for free, will:

• guarantee an ongoing, permanent income and thus

the corresponding purchasing power, even in the

event of unemployment and loss of social support;

and

• provide all companies with an alternative source of

income and the opportunity to keep their sales up
and thus prevent numerous bankruptcies and

further job losses.

The explosive environmental situation, such as climate

change, pollution and the unabated consumption of non-

renewable resources are devouring more and more money.

According to former World Bank chief

economist, Nicholas Stern, the future

cost of climate change alone will be

20% of global economic output,

equivalent to 5.5 trillion dollar a year.

$ 5,500,000,000,000!!!

Only an UNCONDITIONAL BASIC INCOME, which is

distributed to all people worldwide and which mainly can be

used for the purchase of sustainable, biological and

human-ecological products and services can prevent the

environmental and climate problems.

Our actions and offers are primarily sustainable and human

ecology driven.

In this way we make a significant contribution to avoiding

environmental problems

Our global financial system is more unstable than ever

before.

All reputable and independent experts agree that we face a

global financial crash on an unprecedented scale.

Only the timing cannot be foreseen.

It is not for nothing that the gold price rises continuously

and extreme gold advertising increases, as well as many

countries bring their gold reserves back to their own

country!

Only an UNCONDITIONAL BASIC INCOME, which is

based on a not publicly tradeable, thus on a non-

speculative and only internal used cryptocurrency,

distributed to all people worldwide can prevent financial

loses in case of a global financial crash.

It is long overdue to protect ourselves. Our

unconditional basic income based on our blockchain

GLOBAL UNCONDITIONAL BASIC INCOME and our

crypto currency GLOBAL is the solution.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 5

The blockchain

GLOBAL UNCONDITIONAL BASIC INCOME

and the crypto currency

GLOBAL

Technical Specification

Blockchain Name: GLOBAL UNCONDITIONAL BASIC INCOME

Coin Name: GLOBAL

Trade Code: XGB

Platform: Stellar Blockchain fork*)

Total Supply: 900B

Number of decimal points: 2

Exchange Coin Price in US$: 50

(fixed by the rounded value of 1gm gold at the time of the official

release)

Reserved coins for the team: 10B

Network consensus algorithm: Proof of Stake*)

Block Generation: 2 - 5 seconds

*) The STELLAR CONSENSUS PROTOCOL (White Paper) is inserted separately in the appendix.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 6

 Our offer is made via two different but interconnected web portals as follows:

 The Easy Life Community & Blockchain Network Portal

 The GLOBAL Crypto Currency Exchange Portal

 Presentation Of Our Offer

Our Easy Life Community &

Blockchain Network Portal,

which can be reached at

https://easylife.community,

is primarily used for informative,

communicative and commercial

purposes.

It includes, among other things, a

"Meeting Point" in line with common

community sites which serves as a

communication tool for all members.

In particular, includes this portal naturally has the multi-vendor shop in which producers, dealers and service providers offer

their goods or services and interested customers can purchase them.

The prices in the shop are always made up of GLOBAL and Fiat currencies. Vendors have to accept at least 25% of the sales

price in GLOBAL.

Our GLOBAL Exchange Portal which can be reached

at https://global.easylife.community, serves - in

addition to further information, in particular about

the crypto currency GLOBAL itself - primarily to

manage member accounts, deposits and

withdrawals, as well as exchanges between various

national and crypto currencies.

The following national and crypto currencies can

currently be exchanged on our exchange platform:

National currencies:

US dollar, Euro, Pound Sterling, Canadian Dollar,

Australian Dollar, Japanese Yen, Chinese Yuan,

Indian Rupee

Crypto currencies:

GLOBAL, Bitcoin, Ethereum, Litecoin, Ripple

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 7

 Additional Services

In addition to the unconditional basic income which we

automatically credit to all member accounts month by

month, we, the "Easy Life Community & Blockchain

Network" (short: ELC) offer

• financial participation in the advertising revenue;

• up to 100% purchase price refund on all shopping

in fiat currencies - also for business needs and

merchandise (wherever, whenever, whatever one

buy and however high the price maybe);

• financial protection against possible financial crash

through the use of our own cryptocurrency,

"GLOBAL" for any internal and external payment

transactions;

• free usage rights of stocks (members have the right

to vote and the right to receive the annual dividend)

and more.

"Easy Life Community & Blockchain Network" is a perfect combination of all functions and benefits of well-known social

platforms, online mail order companies, blockchains, cryptocurrencies and more.

The key difference: at ELC, members will not only receive a monthly unconditional basic income, they are for the first time

fully automatically involved in the financial success of the platform.

All for free, for life and without any additional work and time exposure.

ELC members become a real, co-determining partner as it in fact should be in a fair and reliable social community

worth being labeled as such!

Due to our mainly human ecological, sustainable and biological orientation, all members also - fully automatically -

make a significant contribution to environmental protection and humanity.

The "Easy Life Community & Blockchain Network" and it's crypto "GLOBAL" was created to make members life as easy as

possible, thus they need only following two - for better results three - simple steps to success:

1. to register for the free membership for lifetime - as with any other community, social media network or similar

platform;

2. to invite friends or business partners - as with any other community, social media network or similar platform.

As soon as they have successfully invited 5 (five) friends, they are entitled to the highest possible participation in the

advertising revenue (35%) and 80% purchase price refund.

If only one of the successful invitations registers as a "Business Member" the inviting member will receive a 100%

refund of the purchase price;

3. to take the time to customize their meeting point (community) profile

That's it! From this moment on there is no more to do for a member! He may lean back and enjoy his benefits, receive his

monthly unconditional basic income, his share of our advertising revenue, his purchase price refunds on products and

services payable / paid in fiat currencies, his usage rights of shares and all offered additional free services.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 8

Team Members

Mario Eduard Giovanelli, is the initiator of "Easy Life

Community & Blockchain Network", the blockchain

“Global Unconditional Basic Income” and the

cryptocurrency "GLOBAL", director and majority

shareholder of Human Ecological Business Holding

International.

He is an international active entrepreneur; long-time

(since 1984) experienced mastermind relating to creative

and alternative, sustainable, human-ecological

businesses; business success power trainer & coach;

inventor, author, painter.

 He was and is involved in international businesses with numerous establishments and takeovers of businesses, in countries

such as the USA, Switzerland, Germany, Austria, Italy, Spain, Hungary, the Czech Republic, the Ukraine, the Commonwealth

of Dominica and other more.

Part of this was and are the establishment and/or the takeover, management and selling of media publishing houses, private

TV, data management, software & IT development, marketing, gastronomy, hotel businesses and many others.

Particular highlights were, among others, the establishment of the first private bank in the Ukraine in 1992 (after the fall of the

USSR, at a time when there was no definite constitution, no stock corporation and/or corporate law and no real cash money,

just ‘Coupons’), as well as the development, establishment and implementation of one of the first Internet casinos with real

time gaming (as early as 1997).

[George Bernard Shaw]

Exactly this attitude, his permanent search for alternatives for

the many global "WHY's" and the closer examination "WHY

NOT?" led him to the most fresh and successful concept for

future finances, business and life, the

Easy Life Community & Blockchain Network

and the unconditional basic income for all, based on the

blockchain

Global Unconditional Basic Income

and the crypto currency

GLOBAL.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 9

Sohan Yadav is a FullStack / Blockchain Expert.

He’s our leading blockchain and cryptocurrency

developer.

He is the leading developer of all our blockchain and

cryptocurrency related tasks, e.g. our blockchain core

network, the crypto coin "GLOBAL", the explorer,

SDK, our exchange function including crypto/fiat

listing, the coin rewarding system handling our

"Unconditional Basic Income", the tax regulation, our

App including mobile wallet and more.

He has been working on Blockchain-related projects

since 2017. Besides that, he has been doing back-

end / Web / Hybrid Mobile App since 2012.

Major programming languages and frameworks he

has used are C++/C, Shell, Dart, GO, Python, PHP,

JavaScript, NodeJs, TypeScript, Angular, React

Native, Redux, Flutter, Ionic Framework, HTML,

CSS, JSX.

He has experience with: MySQL, MongoDB,

PostgreSQL, SQlite.

Version Control Systems he has used: Github,

Bitbucket.

Ravi Khandelwal is a Core PHP & Joomla Expert.

He’s our leading PHP and Joomla developer.

He is the leading developer of all Joomla-related tasks, e.g. the
integration of all blockchain and cryptocurrency related tools
(APIs) into Joomla, the implementation of the different needed
Joomla components, modules and plugins, the PHP adaption of
many standard components to our needs, e.g. the registration
using biometric technique, the adaption of the multi-vendor
shop, especially the automatic calculation of our sales prices
and the allowed crypto/fiat currencies and more.

He has 7.4 years of working experience in/with Phonegap,
PHP, CMS-WordPress, Joomla, Magento, Magento Soap web-
services, Amazon MWS/AWS and Web Research.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 10

A one hundred percent subsidiary of the US holding will be used as the license holder for the cryptocurrency and exchange

business.

Obtaining the license is still in progress (as of August 31, 2020).

Further information on the subsidiary and the license will be added here shortly ...

 Companies & Licenses

HUMAN ECOLOGICAL BUSINESS HOLDING INTERNATIONAL INC.

The Human Ecological Business Holding International Inc. is the parent

company and holding company of the entire business.

Company data:

Incorporated by the N.Y.S. Department of State - Division of

Corporations and State Records on August 8th, 2014

FILE#:140808010174

DOS ID:4619150

EIN: 61-174 3669

Registered office:

90 STATE ST STE 700, Office 40

Albany, NY 12207

Founder, Director, CEO: Mario Eduard Giovanelli

Contact: contact@humanecologybusiness.com

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 11

All of us, however, share a common bond. One factor applies to all humans to varying extents throughout our lifetimes: WE ARE

CONSUMERS!

This leads us to the most important realization, the PROVEN FACT, that almost all of the problems facing our planet are based on
our consumer behavior and on past and current market structures and/or economic orders.

It’s a fact most of us don’t realize: mainly our consumer behavior is responsible for most problems on our planet.
Starting with the resources used, the way of production, transport, trade and use, up to the remaining waste, all this determine
global power structures, employment and income conditions, pricings, financial speculations and the related disasters.

Our consumption also determines about wealth or poverty and hunger, the exploitation of nature, the degree of pollution and it
causes wars, not least for dominance over the last resources.

Once we’ve recognized that our problems come from our economic system and that all the charity, half-hearted measures and lip-
service just treat the symptoms and not the cause, then we must begin with treatment. We must apply this treatment where the
cause of the problems lies.

In our search for solutions we made the following sensational discovery: nowadays exists lots of human-ecological, sustainable,
alternative products and services – for any need. Everything we need, even luxury items, exist in alternative form.

The more often the more people will shop human-ecological, sustainable products or services, the sooner the global economy will
get aware that there accrues an increased demand.
And from the normal expansion and revenue growth intentions of the companies, the coverage of this market and thus a huge
improvement of most problems on our planet will be the result.

With our free distribution of an unconditional basic income for all people, which should and can primarily be used for the
production, trade and acquisition of sustainable products and services, we are taking the first step towards a significant
improvement in global problems.

The missions of ELC is to offer an "unconditional basic income" for all members, to protect all members from a global
financial crash and to support sustainable business, projects, products and services.

We and our partners handle in the way described above and offer all members exact such advantages, an unconditional
basic income, the repayment of up to 35% (thirty five percent) of our complete advertising revenue and the “Purchase
Price Refund System” for all shopping in fiat currencies.

In the medium term, the economic principle initiated and applied by ELC - we call it "psci-cycle" (production-sale-consumption-
income cycle), by means of the "Reinvestment System", ensures that everyone profits automatically from every form of
purchasing or acquisition.

Conclusion

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 12

Appendix

The STELLAR CONSENSUS PROTOCOL (White Paper)

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 13

The Stellar Consensus Protocol:

A Federated Model for Internet-level Consensus

DAVID MAZIERES`, Stellar Development Foundation

This paper introduces a new model for consensus called federated Byzantine agreement (FBA). FBA achieves robustness through quorum slices—individual trust decisions made
by each node that together determine system-level quorums. Slices bind the system together much the way individual networks’ peering and transit decisions now unify the
Internet.

We also present the Stellar Consensus Protocol (SCP), a construction for FBA. Like all Byzantine agreement protocols, SCP makes no assumptions about the rational behavior
of attackers. Unlike prior Byzantine agreement models, which presuppose a unanimously accepted membership list, SCP enjoys open membership that promotes organic
network growth. Compared to decentralized proof of-work and proof-of-stake schemes, SCP has modest computing and financial requirements, lowering the barrier to entry and
potentially opening up financial systems to new participants.

CCS Concepts: •Security and privacy Ă Distributed systems security; Security protocols;

Additional Key Words and Phrases: Byzantine fault tolerance, asynchronous systems

1. INTRODUCTION

Financial infrastructure is currently a mess of closed systems. Gaps between these systems mean that transaction costs are high

[Provost 2013] and money moves slowly across political and geographic boundaries [Banning-Lover 2015; CGAP 2008]. This

friction has curtailed the growth of financial services, leaving billions of people underserved financially [Demirguc-Kunt et al.

2015].

To solve these problems, we need financial infrastructure that supports the kind of organic growth and innovation we’ve seen

from the Internet, yet still ensures the integrity of financial transactions. Historically, we have relied on high barriers to entry to

ensure integrity. We trust established financial institutions and do our best to regulate them. But this exclusivity conflicts with

the goal of organic growth. Growth demands new, innovative participants, who may possess only modest financial and

computing resources.

We need a worldwide financial network open to anyone, so that new organizations can join and extend financial access to

unserved communities. The challenge for such a network is ensuring participants record transactions correctly. With a low

barrier to entry, users won’t trust providers to police themselves. With worldwide reach, providers won’t all trust a single entity

to operate the network. A compelling alternative is a decentralized system in which participants together ensure integrity by

agreeing on the validity of one another’s transactions. Such agreement hinges on a mechanism for worldwide consensus.

This paper presents federated Byzantine agreement (FBA), a model suitable for worldwide consensus. In FBA, each participant

knows of others it considers important. It waits for the vast majority of those others to agree on any transaction before

considering the transaction settled. In turn, those important participants do not agree to the transaction until the participants

they consider important agree as well, and so on. Eventually, enough of the network accepts a transaction that it becomes

infeasible for an attacker to roll it back. Only then do any participants consider the transaction settled. FBA’s consensus can

ensure the integrity of a financial network. Its decentralized control can spur organic growth.

This paper further presents the Stellar consensus protocol (SCP), a construction for FBA. We prove that SCP’s safety is optimal for

an asynchronous protocol, in that it guarantees agreement under any node-failure scenario that admits such a guarantee.

Draft of February 25, 2016
We also show that SCP is free from blocked states—in which consensus is no longer possible—unless participant failures make it

impossible to satisfy trust dependencies. SCP is the first provably safe consensus mechanism to enjoy four key properties

simultaneously:

— Decentralized control. Anyone is able to participate and no central authority dictates whose approval is required for

consensus.

— Low latency. In practice, nodes can reach consensus at timescales humans expect for web or payment transactions—i.e., a

few seconds at most.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 14

— Flexible trust. Users have the freedom to trust any combination of parties they see fit. For example, a small non-profit may

play a key role in keeping much larger institutions honest.

— Asymptotic security. Safety rests on digital signatures and hash families whose parameters can realistically be tuned to

protect against adversaries with unimaginably vast computing power.

SCP has applications beyond financial markets for ensuring organizations perform important functions honestly. An example is

certificate authorities (CAs), who literally hold the keys to the web. Experience shows that CAs sign incorrect certificates that get

used in the wild [Microsoft 2013; Langley 2015]. Several proposals address this problem through certificate transparency [Kim et

al. 2013; Laurie et al. 2013; Basin et al. 2014; Melara et al. 2014]. Certificate transparency allows users to examine the history of

certificates issued for any given entity and detect attempts by CAs to change an entity’s public key without the endorsement of

the previous key. SCP holds the potential to strengthen the indelible certificate history at the core of certificate transparency.

Demanding global consensus on certificate history among a decentralized group of auditors would make it harder to backpedal

and override previously issued certificates.

The next section discusses previous approaches to consensus. Section 3 defines federated Byzantine agreement (FBA) and lays

out notions of safety and liveness applicable in the FBA model. Section 4 discusses optimal failure resilience in an FBA system,

thereby establishing the security goals for SCP. Section 5 develops federated voting, a key building block of the SCP protocol.

Section 6 presents SCP itself, proving safety and freedom from blocked states. Section 7 discusses limitations of SCP. Finally,

Section 8 summarizes results. For readers less familiar with mathematical notation, Appendix A defines some symbols used

throughout the paper.

2. RELATED WORK

Figure 1 summarizes how SCP differs from previous consensus mechanisms. The most famous decentralized consensus

mechanism is the proof-of-work scheme advanced by Bitcoin [Nakamoto 2008]. Bitcoin takes a two-pronged approach to

consensus. First, it provides incentives for rational actors to behave well. Second, it settles transactions through a proof-of-work

[Dwork and Naor 1992] algorithm designed to protect against ill-behaved actors who do not possess the majority of the system’s

computing power. Bitcoin has overwhelmingly demonstrated the appeal of decentralized consensus [Bonneau et al. 2015].

Proof of work has limitations, however. First, it wastes resources: by one estimate from 2014, Bitcoin might consume as much

electric power as the entire country of Ireland [O’Dwyer and Malone 2014]. Second, secure transaction settlement suffers from

expected latencies in the minutes or tens of minutes [Karame et al. 2012]. Finally, in contrast to traditional cryptographic

protocols, proof of work offers no asymptotic security. Given non-rational attackers—or ones with extrinsic incentives to

sabotage

mechanism

decentralized

control
low

latency
flexible

trust
asymptotic

security

proof of work
✦

proof of stake ✦ maybe maybe

Byzantine agreement ✦ ✦ ✦

Tendermint ✦ ✦ ✦

SCP (this work) ✦ ✦ ✦ ✦

 Fig. 1. Properties of different consensus mechanisms

consensus—small computational advantages can invalidate the security assumption, allowing history to be re-written in so-

called “51% attacks.” Worse, attackers initially controlling less than 50% of computation can game the system to provide

disproportionate rewards for those who join them [Eyal and Sirer 2013], thereby potentially gaining majority control. As the

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 15

leading digital currency backed by the most computational power, Bitcoin enjoys a measure of protection against 51% attacks.

Smaller systems have fallen victim [crazyearner 2013; Bradbury 2013], however, posing a problem for any proof-of-work system

not built on the Bitcoin block chain.

An alternative to proof of work is proof of stake [King and Nadal 2012], in which consensus depends on parties that have posted

collateral. Like proof of work, rewards encourage rational participants to obey the protocol; some designs additionally penalize

bad behavior [Buterin 2014; Davarpanah et al. 2015]. Proof of stake opens the possibility of so-called “nothing at stake” attacks,

in which parties that previously posted collateral but later cashed it in and spent the money can go back and rewrite history from

a point where they still had stake. To mitigate such attacks, systems effectively combine proof of stake with proof of work—

scaling down the required work in proportion to stake—or delay refunding collateral long enough for some other (sometimes

informal) consensus mechanism to establish an irreversible checkpoint.

Still another approach to consensus is Byzantine agreement [Pease et al. 1980; Lamport et al. 1982], the best known variant of

which is PBFT [Castro and Liskov 1999]. Byzantine agreement ensures consensus despite arbitrary (including non-rational)

behavior on the part of some fraction of participants. This approach has two appealing properties. First, consensus can be fast

and efficient. Second, trust is entirely decoupled from resource ownership, which makes it possible for a small non-profit to help

keep more powerful organizations, such as banks or CAs, honest. Complicating matters, however, all parties must agree on the

the exact list of participants. Moreover, attackers must be prevented from joining multiple times and exceeding the system’s

failure tolerance, a so-called Sybil attack [Douceur 2002]. BFT-CUP [Alchieri et al. 2008] accommodates unknown participants,

but still presupposes a Sybil-proof centralized admission-control mechanism.

Generally, membership in Byzantine agreement systems is set by a central authority or closed negotiation. Prior attempts to

decentralize admission have given up some of the benefits. One approach, taken by Ripple, is to publish a “starter” membership

list that participants can edit for themselves, hoping people’s edits are either inconsequential or reproduced by an

overwhelming fraction of participants. Unfortunately, because divergent lists invalidate safety guarantees [Schwartz et al. 2014],

users are reluctant to edit the list in practice and a great deal of power ends up concentrated in the maintainer of the starter list.

Another approach, taken by Tendermint [Kwon 2014], is to base membership on proof of stake. However, doing so once again

ties trust to resource ownership. SCP is the first Byzantine agreement protocol to give each participant maximum freedom in

chosing which combinations of other participants to trust.

3. FEDERATED BYZANTINE AGREEMENT SYSTEMS

This section introduces the federated Byzantine agreement (FBA) model. Like nonfederated Byzantine agreement, FBA addresses

the problem of updating replicated state, such as a transaction ledger or certificate tree. By agreeing on what updates to apply,

nodes avoid contradictory, irreconcilable states. We identify each update by a unique slot from which inter-update

dependencies can be inferred. For instance, slots may be consecutively numbered positions in a sequentially applied log.

An FBA system runs a consensus protocol that ensures nodes agree on slot contents. A node 𝑣 can safely apply update 𝑥 in slot

𝑖 when it has safely applied updates in all slots upon which 𝑖 depends and, additionally, it believes all correctly functioning nodes

will eventually agree on 𝑥 for slot 𝑖. At this point, we say 𝑣 has externalized 𝑥 for slot 𝑖. The outside world may react to

externalized values in irreversible ways, so a node cannot later change its mind about them.

A challenge for FBA is that malicious parties can join many times and outnumber honest nodes. Hence, traditional majority-

based quorums do not work. Instead, FBA determines quorums in a decentralized way, by each node selecting what we call

quorum slices. The next subsection defines quorums based on slices. The following subsection provides some examples and

discussion. Finally, we define the key properties of safety and liveness that a consensus protocol should hope to achieve.

3.1. Quorum slices

In a consensus protocol, nodes exchange messages asserting statements about slots. We assume such assertions cannot be

forged, which can be guaranteed if nodes are named by public key and they digitally sign messages. When a node hears a

sufficient set of nodes assert a statement, it assumes no functioning node will ever contradict that statement. We call such a

sufficient set a quorum slice, or, more concisely, just a slice. To permit progress in the face of node failures, a node may have

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 16

multiple slices, any one of which is sufficient to convince it of a statement. At a high level, then, an FBA system consists of a

loose confederation of nodes each of which has chosen one or more slices. More formally:

Definition (FBAS). A federated Byzantine agreement system, or FBAS, is a pair

ं comprising a set of nodes 𝐕 and a quorum function 𝐐 Ȃ 𝐕 Ă 22𝐕 ܂𝐕,𝐐܂ {∅} specifying one or more quorum slices for each node,

where a node belongs to all of its own quorum slices—i.e., Ȃ𝑣 Ȃ 𝐕,Ȃ𝑞 Ȃ 𝐐(𝑣),𝑣 Ȃ 𝑞. (Note 2𝑋 denotes the powerset of 𝑋.)

Definition (quorum). A set of nodes 𝑈 Ȃ 𝐕 in FBAS ܂𝐕,𝐐 ܂ is a quorum iff 𝑈 Ȃ ∅ and 𝑈 contains a slice for each member—i.e.,

Ȃ𝑣 Ȃ 𝑈,Ȃ𝑞 Ȃ 𝐐(𝑣) such that 𝑞 Ȃ 𝑈.

A quorum is a set of nodes sufficient to reach agreement. A quorum slice is the subset of a quorum convincing one particular

node of agreement. A quorum slice may be smaller than a quorum. Consider the four-node system in Figure 2, where each node

has a single slice and arrows point to the other members of that slice. Node 𝑣1’s slice {𝑣1,𝑣2,𝑣3} is sufficient to convince 𝑣1 of a

statement. But 𝑣2’s and 𝑣3’s slices include 𝑣4, meaning neither 𝑣2 nor 𝑣3 can assert a statement without 𝑣4’s agreement. Hence,

no agreement is possible without 𝑣4’s participation, and the only quorum including 𝑣1 is the set of all nodes {𝑣1,𝑣2,𝑣3,𝑣4}.

Traditional, non-federated Byzantine agreement requires all nodes to accept the same slices,

meaning Ȃ𝑣1,𝑣2,𝐐(𝑣1) = 𝐐(𝑣2). Because every member accepts every slice, traditional systems

do not distinguish between slices and quorums. The downside is

𝐐(𝑣1) = {{𝑣1,𝑣2,𝑣3}}

3 𝐐(𝑣2) = 𝐐(𝑣3) = 𝐐(𝑣4) =
{{𝑣2,𝑣3,𝑣4}}

 Fig. 2. 𝑣1’s quorum slice is not a quorum without 𝑣4.

Top tier: slice is 3 out of
{𝑣1,𝑣2,𝑣3,𝑣4}, including self

Middle tier: slice is self + any
2 top tier nodes

Leaf tier: slice is self + any 2 middle tier nodes

 Fig. 3. Tiered quorum structure example

that membership and quorums must somehow be pre-ordained, precluding open membership and decentralized control. A

traditional system, such as PBFT [Castro and Liskov 1999], typically has 3𝑓 +1 nodes, any 2𝑓 +1 of which constitute a quorum.

Here 𝑓 is the maximum number of Byzantine failures—meaning nodes acting arbitrarily— the system can survive.

FBA, introduced by this paper, generalizes Byzantine agreement to accommodate a greater range of settings. FBA’s key

innovation is enabling each node 𝑣 to chose its own quorum slice set 𝐐(𝑣). System-wide quorums thus arise from individual

decisions made by each node. Nodes may select slices based on arbitrary criteria such as reputation or financial arrangements. In

2 / 4

/ 4 2

3 / 4

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 17

some settings, no individual node may have complete knowledge of all nodes in the system, yet consensus should still be

possible.

3.2. Examples and discussion

Figure 3 shows an example of a tiered system in which different nodes have different slice sets, something possible only with

FBA. A top tier, comprising 𝑣1,…,𝑣4, is structured like a PBFT system with 𝑓 = 1, meaning it can tolerate one Byzantine failure so

long as the other three nodes are reachable and well-behaved. Nodes 𝑣5,…,𝑣8 constitute a middle tier and depend not on each

other, but rather on the top tier. Only two top tier nodes are required to form a slice for a middle tier node. (The top tier

assumes at most one Byzantine failure, so two top tier nodes cannot both fail unless the whole system has failed.) Nodes 𝑣9 and

𝑣10 are in a leaf tier for which a slice consists of any

 𝐐(𝑣𝑖) = {{𝑣𝑖,𝑣(𝑖 mod 6)+1}}

 Fig. 4. Cyclic quorum structure example

two middle tier nodes. Note that 𝑣9 and 𝑣10 may pick disjoint slices such as {𝑣5,𝑣6} and {𝑣7,𝑣8}; nonetheless, both will indirectly

depend on the top tier.

In practice, the top tier could consist of anywhere from four to dozens of widely known and trusted financial institutions. As the

size of the top tier grows, there may not be exact agreement on its membership, but there will be significant overlap between

most parties’ notions of top tier. Additionally, one can imagine multiple middle tiers, for instance one for each country or

geographic region.

This tiered structure resembles inter-domain network routing. The Internet today is held together by individual peering and

transit relationships between pairs of networks. No central authority dictates or arbitrates these arrangements. Yet these

pairwise relationships have sufficed to create a notion of de facto tier one ISPs [Norton 2010]. Though Internet reachability does

suffer from firewalls, transitive reachability is nearly complete—e.g., a firewall might block The New York Times, but if it allows

Google, and Google can reach The New York Times, then The New York Times is transitively reachable. Transitive reachability

may be of limited utility for web sites, but it is crucial for consensus; the equivalent example would be Google accepting

statements only if The New York Times does.

If we think of quorum slices as analogous to network reachability and quorums as analogous to transitive reachability, then the

Internet’s near complete transitive reachability suggests we can likewise ensure worldwide consensus with FBA. In many ways,

consensus is an easier problem than inter-domain routing. While transit consumes resources and costs money, slice inclusion

merely requires checking digital signatures. Hence, FBA nodes can err on the side of inclusiveness, constructing conservative

slices with greater interdependence and redundancy than typically seen in peering and transit arrangements.

Another example not possible with centralized consensus is cyclic dependency structures, such as the one depicted in Figure 4.

Such a cycle is unlikely to arise intentionally, but when individual nodes choose their own slices, it is possible for the overall

system to end up embedding dependency cycles. The bigger point is that, compared to traditional Byzantine agreement, an FBA

protocol must cope with a far wider variety of quorum structures.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 18

3.3. Safety and liveness

We categorize nodes as either well-behaved or ill-behaved. A well-behaved node chooses sensible quorum slices (discussed

further in Section 4.1) and obeys the protocol, including eventually responding to all requests. An ill-behaved node does not. Ill-

behaved nodes suffer Byzantine failure, meaning they behave arbitrarily. For instance, an ill-

 ill-behaved well-behaved

failed correct

 Fig. 5. Venn diagram of node failures

behaved node may be compromised, its owner may

have maliciously modified the software, or it may have crashed.

The goal of Byzantine agreement is to ensure that well-behaved nodes externalize the same values despite the presence of such

ill-behaved nodes. There are two parts to this goal. First, we would like to prevent nodes from diverging and externalizing

different values for the same slot. Second, we would like to ensure nodes can actually externalize values, as opposed to getting

blocked in some dead-end state from which consensus is no longer possible. We introduce the following two terms for these

properties:

Definition (safety). A set of nodes in an FBAS enjoy safety if no two of them ever externalize different values for the same

slot.

Definition (liveness). A node in an FBAS enjoys liveness if it can externalize new values without the participation of any failed

(including ill-behaved) nodes.

We call well-behaved nodes that enjoy both safety and liveness correct. Nodes that are not correct have failed. All ill-behaved

nodes have failed, but a well-behaved node can fail, too, by waiting indefinitely for messages from ill-behaved nodes, or, worse,

by having its state poisoned by incorrect messages from ill-behaved nodes.

Figure 5 illustrates the possible kinds of node failure. To the left are Byzantine failures, meaning the ill-behaved nodes. To the

right are two kinds of well-behaved but failed nodes. Nodes that lack liveness are termed blocked, while those that lack safety

are termed divergent. An attack violating safety is strictly more powerful than one violating only liveness, so we classify

divergent nodes as a subset of blocked ones.

Our definition of liveness is weak in that it says a node can externalize new values, not that it will. Hence, it admits a state of

perpetual preemption in which consensus remains forever possible, yet the network continually thwarts it by delaying or

reordering critical messages in just the wrong way. Perpetual preemption is inevitable in a purely asynchronous, deterministic

system that survives node failure [Fischer et al. 1985]. Fortunately, preemption is transient. It does not indicate node failure,

because the system can recover at any time. Protocols can mitigate the problem through randomness [Ben-Or 1983; Bracha and

Toueg 1985] or through realistic assumptions about message latency [Dwork et al. 1988]. Latency assumptions are more

practical when one would like to limit execution time or avoid the trusted dealers often required by more efficient Randomized

algorithms [?]. Of course, only termination and not safety should depend upon message timing.

4. OPTIMAL RESILIENCE

Whether or not nodes enjoy safety and liveness depends on several factors: what quorum slices they have chosen, which nodes

are ill-behaved, and of course the concrete consensus protocol and network behavior. As is common for asynchronous systems,

we assume the network eventually delivers messages between well-behaved nodes, but can otherwise arbitrarily delay or

reorder messages.

Byzantine,

including

crashed
blocked

correct

divergent

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 19

𝐐(𝑣1) =𝐐(𝑣4) =

𝐐(𝑣2) =𝐐(𝑣5) = 𝐐(𝑣3) =𝐐(𝑣6) =

{{𝑣1,𝑣2,𝑣3}}{{𝑣4,𝑣5,𝑣6}}

 Fig. 6. FBAS lacking quorum intersection

 Fig. 7. Ill-behaved node 𝑣7 can undermine quorum intersection.

This section answers the following question: given a specific ܂𝐕,𝐐 ܂ and particular subset of 𝐕 that is ill-behaved, what are the best

safety and liveness that any federated Byzantine agreement protocol can guarantee regardless of the network? We first discuss

quorum intersection, a property without which safety is impossible to guarantee. We then introduce a notion of dispensable

sets—sets of failed nodes in spite of which it is possible to guarantee both safety and liveness.

4.1. Quorum intersection

A protocol can guarantee agreement only if the quorum slices represented by function 𝐐 satisfy a validity property we call

quorum intersection.

Definition (quorum intersection). An FBAS enjoys quorum intersection iff any two of its quorums share a node—i.e., for all

quorums 𝑈1 and 𝑈2, 𝑈1 Ȃ 𝑈2 Ȃ ∅.

Figure 6 illustrates a system lacking quorum intersection, where 𝐐 permits two quorums, {𝑣1,𝑣2,𝑣3} and {𝑣4,𝑣5,𝑣6}, that do not

intersect. Disjoint quorums can independently agree on contradictory statements, undermining system-wide agreement. When

many quorums exist, quorum intersection fails if any two do not intersect. For example, the set of all nodes {𝑣1,…,𝑣6} in Figure 6

is a quorum that intersects the other two, but the system still lacks quorum intersection because the other two do not intersect

each other.

No protocol can guarantee safety in the absence of quorum intersection, since such a configuration can operate as two different

FBAS systems that do not exchange any messages. However, even with quorum intersection, safety may be impossible to

guarantee in the presence of ill-behaved nodes. Compare Figure 6, in which there are two disjoint quorums, to Figure 7, in which

two quorums intersect at a single node 𝑣7, and 𝑣7 is ill-behaved. If 𝑣7 makes inconsistent statements to the left and right

quorums, the effect is equivalent to disjoint quorums.

In fact, since ill-behaved nodes contribute nothing to safety, no protocol can guarantee safety without the well-behaved nodes

enjoying quorum intersection on their own. After all, in a worst-case scenario for safety, ill-behaved nodes can just always make

any possible (contradictory) statement that completes a quorum. Two quorums overlapping only at ill-behaved nodes will again

be able to operate like two different FBAS systems thanks to the duplicity of the ill-behaved nodes. In short, FBAS ܂𝐕,𝐐 ܂ can

survive Byzantine failure by a set of nodes 𝐵 Ȃ 𝐕 iff ܂𝐕,𝐐 ܂ enjoys quorum intersection after deleting the nodes in 𝐵 from 𝐕 and

from all slices in 𝐐. More formally:

Definition (delete). If ܂𝐕,𝐐܂ is an FBAS and 𝐵 Ȃ 𝐕 is a set of nodes, then to delete 𝐵 from ܂𝐕,𝐐܂, written ܂𝐕,𝐐܂𝐵, means to

compute the modified FBAS ܂𝐕 ं 𝐵,𝐐𝐵܂ where 𝐐𝐵(𝑣) = {𝑞 ं 𝐵 Ȃ 𝑞 Ȃ 𝐐(𝑣)}.

It is the responsibility of each node 𝑣 to ensure 𝐐(𝑣) does not violate quorum intersection. One way to do so is to pick

conservative slices that lead to large quorums. Of course, a malicious 𝑣 may intentionally pick 𝐐(𝑣) to violate quorum

 ,𝑣 ,𝑣 ,𝑣

 ,𝑣 ,𝑣 ,𝑣

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 20

intersection. But a malicious 𝑣 can also lie about the value of 𝐐(𝑣) or ignore 𝐐(𝑣) to make arbitrary assertions. In short, 𝐐(𝑣)’s

value is not meaningful when 𝑣 is ill-behaved. This is why the necessary property for safety—quorum intersection of well-

behaved nodes after deleting ill-behaved nodes—is unaffected by the slices of ill-behaved nodes.

Suppose Figure 6 evolved from a three-node FBAS 𝑣1,𝑣2,𝑣3 with quorum intersection to a six-node FBAS without. When 𝑣4,𝑣5,𝑣6

join, they maliciously choose slices that violate quorum intersection and no protocol can guarantee safety for 𝐕. Fortunately,

deleting the bad nodes to yield ܂𝐕,𝐐܂{𝑣4
,𝑣5

,𝑣6
} restores quorum intersection, meaning at least {𝑣1,𝑣2,𝑣3} can enjoy safety. Note that

deletion is conceptual, for the sake of describing optimal safety. A protocol should guarantee safety for 𝑣1,𝑣2,𝑣3 without their

needing to know that 𝑣4,𝑣5,𝑣6 are ill-behaved.

4.2. Dispensable sets (DSets)

We capture the fault tolerance of nodes’ slice selections through the notion of a dispensible set or DSet. Informally, the safety

and liveness of nodes outside a DSet can be guaranteed regardless of the behavior of nodes inside the DSet. Put another way, in

an optimally resilient FBAS, if a single DSet encompasses every ill-behaved node, it also contains every failed node, and

conversely all nodes outside the DSet are correct. As an example, in a centralized PBFT system with 3𝑓 + 1 nodes and quorum

size 2𝑓 + 1, any 𝑓 or fewer nodes constitute a DSet. Since PBFT in fact survives up to 𝑓 Byzantine failures, its robustness is

optimal.

In the less regular example of Figure 3, {𝑣1} is a DSet, since one top tier node can fail without affecting the rest of the system. {𝑣9}

is also a DSet because no other node depends on 𝑣9 for correctness. {𝑣6,…,𝑣10} is a DSet, because neither 𝑣5 nor the top tier

depend on any of those five nodes. {𝑣5,𝑣6} is not a DSet, as it is a slice for 𝑣9 and 𝑣10 and hence, if entirely malicious, can lie to 𝑣9

and 𝑣10 and convince them of assertions inconsistent with each other or the rest of the system.

To prevent a misbehaving DSet from affecting the correctness of other nodes, two properties must hold. For safety, deleting the

DSet cannot undermine quorum intersection. For liveness, the DSet cannot deny other nodes a functioning quorum. This leads

to the following definition:

Definition (DSet). Let ܂𝐕,𝐐 ܂ be an FBAS and 𝐵 Ȃ 𝐕 be a set of nodes. We say 𝐵 is a dispensible set, or DSet, iff:

(1) (quorum intersection despite 𝐵) ܂𝐕,𝐐܂𝐵 enjoys quorum intersection, and

(2) (quorum availability despite 𝐵) Either 𝐕 ं 𝐵 is a quorum in ܂𝐕,𝐐 ܂ or 𝐵 = 𝐕.

Quorum availability despite 𝐵 protects against nodes in 𝐵 refusing to answer requests and blocking other nodes’ progress.

Quorum intersection despite 𝐵 protects against the opposite—nodes in 𝐵 making contradictory assertions that enable other

nodes to externalize inconsistent values for the same slot. Nodes must balance the two threats in slice selection. All else equal,

bigger slices lead to bigger quorums with

well-behaved /

ill-behaved

Local property of nodes, independent of other nodes (except for

the validity of slice selection).

intact /

befouled

Property of nodes given their quorum slices and a particular set of

ill-behaved nodes. Befouled nodes are ill-behaved or depend,

possibly indirectly, on too many ill-behaved nodes.

correct /

failed

Property of nodes given their quorum slices, a concrete protocol,

and actual network behavior. The goal of a consensus protocol is

to guarantee correctness for all intact nodes.
 Fig. 8. Key properties of FBAS nodes

greater overlap, meaning fewer failed node sets 𝐵 will undermine quorum intersection when deleted. On the other hand, bigger

slices are more likely to contain failed nodes, endangering quorum availability.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 21

The smallest DSet containing all ill-behaved nodes may encompass well-behaved nodes as well, reflecting the fact that a

sufficiently large set of ill-behaved nodes can cause well-behaved nodes to fail. For instance, in Figure 3, the smallest DSet

containing 𝑣5 and 𝑣6 is {𝑣5,𝑣6,𝑣9,𝑣10}. The set of all nodes, 𝐕, is always a DSet, as an FBAS ܂𝐕,𝐐܂ vacuously enjoys quorum

intersection despite 𝐕 and, by special case, also enjoys quorum availability despite 𝐕. The motivation for the special case is that

given sufficiently many ill-behaved nodes, 𝐕 may be the smallest DSet to contain all ill-behaved ones, indicating a scenario under

which no protocol can guarantee anything better than complete system failure.

The DSets in an FBAS are determined a priori by the quorum function 𝐐. Which nodes are well- and ill-behaved depends on

runtime behavior, such as machines getting compromised. The DSets we care about are those that encompass all ill-behaved

nodes, as they help us distinguish nodes that should be guaranteed correct from ones for which such a guarantee is impossible.

To this end, we introduce the following terms:

Definition (intact). A node 𝑣 in an FBAS is intact iff there exists a DSet 𝐵 containing all ill-behaved nodes and such that 𝑣 Ȃ 𝐵.

Definition (befouled). A node 𝑣 in an FBAS is befouled iff it is not intact.

A befouled node 𝑣 is surrounded by enough failed nodes to block its progress or poison its state, even if 𝑣 itself is well-behaved.

No FBAS can guarantee the correctness of a befouled node. However, an optimal FBAS guarantees that every intact node

remains correct. Figure 8 summarizes the key properties of nodes. The following theorems facilitate analysis by showing that the

set of befouled nodes is always a DSet in an FBAS with quorum intersection.

THEOREM 1. Let 𝑈 be a quorum in FBAS ܂𝐕,𝐐܂, let 𝐵 Ȃ 𝐕 be a set of nodes, and let 𝑈′ = 𝑈 ं 𝐵. If 𝑈′ Ȃ ∅ then 𝑈′ is a

quorum in ܂𝐕,𝐐܂𝐵.

PROOF. Because 𝑈 is a quorum, every node 𝑣 Ȃ 𝑈 has a 𝑞 Ȃ 𝐐(𝑣) such that 𝑞 Ȃ 𝑈. Since 𝑈′ Ȃ 𝑈, it follows that every 𝑣 Ȃ 𝑈′ has a 𝑞 Ȃ

𝐐(𝑣) such that 𝑞 ं 𝐵 Ȃ 𝑈′. Rewriting with deletion notation yields Ȃ𝑣 Ȃ 𝑈′,Ȃ𝑞 Ȃ 𝐐𝐵(𝑣) such that 𝑞 Ȃ 𝑈′, which, because 𝑈′ Ȃ 𝐕 ं 𝐵,

means that 𝑈′ is a quorum in ܂𝐕,𝐐܂𝐵.

THEOREM 2. If 𝐵1 and 𝐵2 are DSets in an FBAS ܂𝐕,𝐐܂ enjoying quorum intersection, then 𝐵 = 𝐵1 Ȃ 𝐵2 is a DSet, too.

PROOF. Let 𝑈1 = 𝐕 ं 𝐵1 and 𝑈2 = 𝐕 ं 𝐵2. If 𝑈1 = ∅, then 𝐵1 = 𝐕 and 𝐵 = 𝐵2 (a DSet), so we are done. Similarly, if 𝑈2 = ∅, then 𝐵 = 𝐵1,

and we are done. Otherwise, note that by quorum availability despite DSets 𝐵1 and 𝐵2, 𝑈1 and 𝑈2 are quorums in ܂𝐕,𝐐܂. It follows

from the definition that the union of two quorums is also a quorum. Hence 𝐕 ं 𝐵 = 𝑈1 Ȃ 𝑈2 is a quorum and we have quorum

availability despite 𝐵.

We must now show quorum intersection despite 𝐵. Let 𝑈𝑎 and 𝑈𝑏 be any two quorums in ܂𝐕,𝐐܂𝐵. Let 𝑈 = 𝑈1 Ȃ 𝑈2 = 𝑈2 ं 𝐵1. By

quorum intersection of ܂𝐕,𝐐܂, 𝑈 = 𝑈1 Ȃ 𝑈2 Ȃ ∅. But then by Theorem 1, 𝑈 = 𝑈2 ं 𝐵1 must be a quorum in ܂𝐕,𝐐܂𝐵1. Now consider

that 𝑈𝑎 ं 𝐵1 and 𝑈𝑎 ं 𝐵2 cannot both be empty, or else 𝑈𝑎 ं 𝐵 = 𝑈𝑎 would be. Hence, by Theorem 1, either(
܂𝑈𝑎 ܂) ܂ ܂ ं 𝐵1 is a

quorum in (܂𝐕,𝐐܂𝐵)𝐵1 = ܂𝐕,𝐐܂𝐵1, or 𝑈𝑎 ं 𝐵2 is a quorum in 𝐕,𝐐 𝐵 𝐵2 = 𝐕,𝐐 𝐵2, or both. In the former case, note that if 𝑈𝑎 ं 𝐵1 is a

quorum in ܂𝐕,𝐐܂𝐵1, then by quorum intersection of ܂𝐕,𝐐܂𝐵1, (𝑈𝑎 ं 𝐵1) Ȃ 𝑈 Ȃ ∅; since (𝑈𝑎 ं 𝐵1) Ȃ 𝑈 = (𝑈𝑎 ं 𝐵1) ं 𝐵2, it follows that

𝑈𝑎 ं 𝐵2 Ȃ ∅, making 𝑈𝑎 ं 𝐵2 a quorum in ܂𝐕,𝐐܂𝐵2. By a similar argument, 𝑈𝑏 ं 𝐵2 must be a quorum in ܂𝐕,𝐐܂𝐵2. But then quorum

intersection despite 𝐵2 tells us that (𝑈𝑎 ं 𝐵2)Ȃ(𝑈𝑏 ं 𝐵2) Ȃ ∅, which is only possible if 𝑈𝑎 Ȃ 𝑈𝑏 Ȃ ∅.

THEOREM 3. In an FBAS with quorum intersection, the set of befouled nodes is a DSet.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 22

PROOF. Let 𝐵min be the intersection of every DSet that contains all ill-behaved nodes. It follows from the definition of intact that a

node 𝑣 is intact iff 𝑣 Ȃ 𝐵min. Thus, 𝐵min is precisely the set of befouled nodes. By Theorem 2, DSets are closed under intersection,

so 𝐵min is also a DSet.

5. FEDERATED VOTING

This section develops a federated voting technique that FBAS nodes can use to agree on a statement. At a high level, the process

for agreeing on some statement 𝑎 involves nodes exchanging two sets of messages. First, nodes vote for 𝑎. Then, if the vote was

successful, nodes confirm 𝑎, effectively holding a second vote on the fact that the first vote succeeded.

From each node’s perspective, the two rounds of messages divide agreement on a statement 𝑎 into three phases: unknown,

accepted, and confirmed. (This pattern dates back to three-phase commit [Skeen and Stonebraker 1983].) Initially, 𝑎’s status is

completely unknown to a node 𝑣—𝑎 could end up true, false, or even stuck in a permanently indeterminate state. If the first

vote succeeds, 𝑣 may come to accept 𝑎. No two intact nodes ever accept contradictory statements, so if 𝑣 is intact and accepts

𝑎, then 𝑎 cannot be false.

For two reasons, however, 𝑣 accepting 𝑎 does not suffice for 𝑣 to act on 𝑎. First, the fact that 𝑣 accepted 𝑎 does not mean all

intact nodes can; 𝑎 could be stuck for other nodes. Second, if 𝑣 is befouled, then accepting 𝑎 means nothing—𝑎 may be false at

intact nodes. Yet even if 𝑣 is befouled—which 𝑣 does not know—the system may still enjoy quorum intersection of well-behaved

nodes, in which case, for optimal safety, 𝑣 needs greater assurance of 𝑎. Holding a second vote addresses both problems. If the

second vote succeeds, 𝑣 moves to the confirmed phase in which it can finally deem 𝑎 true and act on it.

The next few subsections detail the federated voting process. Because voting does not rule out the possibility of stuck

statements, Section 5.6 discusses how to cope with them. Section 6 will turn federated voting into a consensus protocol that

avoids the possibility of stuck slots for intact nodes.

5.1. Voting with open membership

A correct node in a Byzantine agreement system acts on a statement 𝑎 only when it knows that other correct nodes will never

agree to statements contradicting 𝑎. Most protocols employ voting for this purpose. Well-behaved nodes vote for a statement 𝑎

only if it is valid. Well-behaved nodes also never change their votes. Hence, in centralized Byzantine agreement, it is safe to

accept 𝑎 if a quorum comprising a majority of well-behaved nodes has voted for it. We say a statement is ratified once it has

received the necessary votes.

In a federated setting, we must adapt voting to accommodate open membership. One difference is that a quorum no longer

corresponds to a majority of well-behaved nodes. However, the majority requirement primarily serves to ensure quorum

intersection of well-behaved nodes, which Section 4.1 already adapted to FBA. Another implication of open membership is that

nodes must discover what constitutes a quorum as part of the voting process. To implement quorum discovery, a protocol

should specify 𝐐(𝑣) in all messages from 𝑣.

Definition (vote). A node 𝑣 votes for an (abstract) statement 𝑎 iff

(1) 𝑣 asserts 𝑎 is valid and consistent with all statements 𝑣 has accepted, and

(2) 𝑣 asserts it has never voted against 𝑎—i.e., voted for a statement that contradicts 𝑎—and 𝑣 promises never to vote against
𝑎 in the future.

Definition (ratify). A quorum 𝑈𝑎 ratifies a statement 𝑎 iff every member of 𝑈𝑎 votes for 𝑎. A node 𝑣 ratifies 𝑎 iff 𝑣 is a

member of a quorum 𝑈𝑎 that ratifies 𝑎.

THEOREM 4. Two contradictory statements 𝑎 and 𝑎̀ cannot both be ratified in an FBAS that enjoys quorum
intersection and contains no ill-behaved nodes.

PROOF. By contradiction. Suppose quorum 𝑈1 ratifies 𝑎 and quorum 𝑈2 ratifies 𝑎̀. By quorum intersection, Ȃ𝑣 Ȃ 𝑈1 Ȃ 𝑈2. Such a 𝑣

must have illegally voted for both 𝑎 and 𝑎̀, violating the assumption of no ill-behaved nodes.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 23

THEOREM 5. Let ܂𝐕,𝐐 ܂ be an FBAS enjoying quorum intersection despite 𝐵, and suppose 𝐵 contains all ill-behaved

nodes. Let 𝑣1 and 𝑣2 be two nodes not in 𝐵. Let 𝑎 and 𝑎̀ be contradictory statements. If 𝑣1 ratifies 𝑎 then 𝑣2 cannot

ratify 𝑎̀.

PROOF. By contradiction. Suppose 𝑣1 ratifies 𝑎 and 𝑣2 ratifies 𝑎̀. By definition, there must exist a quorum 𝑈1 containing 𝑣1 that

ratified 𝑎 and quorum 𝑈2 containing 𝑣2 that ratified 𝑎̀. By Theorem 1, since 𝑈1 ं 𝐵 Ȃ ∅ and 𝑈2 ं 𝐵 Ȃ ∅, both must be quorums in

 ,𝐵 enjoys quorum intersection and has no ill-behaved nodes܂𝐕,𝐐܂ 𝐵. But܂𝐕,𝐐܂ 𝐵, meaning they ratified 𝑎 and 𝑎̀ respectively in܂𝐕,𝐐܂

so Theorem 4 tell us 𝑎 and 𝑎̀ cannot both be ratified.

THEOREM 6. Two intact nodes in an FBAS with quorum intersection cannot ratify contradictory statements.

PROOF. Let 𝐵 be the set of befouled nodes. By Theorem 3, 𝐵 is a DSet. By the definition of DSet, ܂𝐕,𝐐 ܂ enjoys quorum intersection

despite 𝐵. By Theorem 5, two nodes not in 𝐵 cannot ratify contradictory statements.

5.2. Blocking sets

In centralized consensus, liveness is an all-or-nothing property of the system. Either a unanimously well-behaved quorum exists,

or else ill-behaved nodes can prevent the rest of the system from accepting new statements. In FBA, by contrast, liveness may

differ across nodes. For instance, in the tiered quorum example of Figure 3, if middle

 Fig. 9. 𝑣4 voted for 𝑎̀, which contradicts ratified statement 𝑎.

tier nodes 𝑣6,𝑣7,𝑣8 crash, the leaf tier will be blocked while the top tier and node 𝑣5 will continue to enjoy liveness.

An FBA protocol can guarantee liveness to a node 𝑣 only if 𝐐(𝑣) contains at least one quorum slice comprising only correct

nodes. A set 𝐵 of failed nodes can violate this property if 𝐵 contains at least one member of each of 𝑣’s slices. We term such a

set 𝐵 𝑣-blocking, because it has the power to block progress by 𝑣.

Definition (𝑣-blocking). Let 𝑣 Ȃ 𝐕 be a node in FBAS ܂𝐕,𝐐܂. A set 𝐵 Ȃ 𝐕 is 𝑣-blocking iff it overlaps every one of 𝑣’s slices—i.e.,

Ȃ𝑞 Ȃ 𝐐(𝑣),𝑞 Ȃ 𝐵 Ȃ ∅.

THEOREM 7. Let 𝐵 Ȃ 𝐕 be a set of nodes in FBAS ܂𝐕,𝐐 ܂. ܂ 𝐕,𝐐 ܂ enjoys quorum availability despite 𝐵 iff 𝐵 is not 𝑣-blocking

for any 𝑣 Ȃ 𝐕 ं 𝐵.

PROOF. “Ȃ𝑣 Ȃ 𝐕 ं 𝐵,𝐵 is not 𝑣-blocking” is equivalent to “Ȃ𝑣 Ȃ 𝐕 ं 𝐵,Ȃ𝑞 Ȃ 𝐐(𝑣) such that 𝑞 Ȃ 𝐕 ं 𝐵.” By the definition of quorum,

the latter holds iff 𝐕 ं 𝐵 is a quorum or 𝐵 = 𝐕, the exact definition of quorum availability despite 𝐵.

As a corollary, the DSet of befouled nodes is not 𝑣-blocking for any intact 𝑣.

5.3. Accepting statements

When an intact node 𝑣 learns that it has ratified a statement, Theorem 6 tells 𝑣 that other intact nodes will not ratify

contradictory statements. This condition is sufficient for 𝑣 to accept 𝑎, but we cannot make it necessary. Ratifying a statement

requires voting for it, and some nodes may have voted for contradictory statements. In Figure 9, for example, 𝑣4 votes for 𝑎̀

vote
accept

vote
accept

vote
accept

vote

3 / 4 Sliceis3nodes,
includingself

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 24

before learning that the other three nodes ratified the contradictory statement 𝑎. Though 𝑣4 cannot now vote for 𝑎, we would

still like it to accept 𝑎 to be consistent with the other nodes.

A key insight is that if a node 𝑣 is intact, then no 𝑣-blocking set 𝐵 can consist entirely of befouled nodes. Now suppose 𝐵 is a 𝑣-

blocking set and every member of 𝐵 claims to accept statement 𝑎. If 𝑣 is intact, at least one member of 𝐵 must be, too. The

intact member will not lie about accepting 𝑎; hence, 𝑎 is true and 𝑣 can accept it. Of course, if 𝑣 is befouled, then 𝑎 might not be

true. But a befouled node can accept anything and vacuously not affect the correctness of intact nodes.

Definition (accept). An FBAS node 𝑣 accepts a statement 𝑎 iff it has never accepted a statement contradicting 𝑎 and it

determines that either

(1) There exists a quorum 𝑈 such that 𝑣 Ȃ 𝑈 and each member of 𝑈 either voted for 𝑎 or claims to accept 𝑎, or

(2) Each member of a 𝑣-blocking set claims to accept 𝑎.

Though a well-behaved node cannot vote for contradictory statements, condition 2 above allows a node to vote for one

statement and later accept a contradictory one.

 Fig. 10. Scenarios indistinguishable to 𝑣2 when 𝑣2 does not see bold messages

THEOREM 8. Two intact nodes in an FBAS that enjoys quorum intersection cannot accept contradictory statements.

PROOF. Let ܂𝐕,𝐐 ܂ be an FBAS with quorum intersection and let 𝐵 be its DSet of befouled nodes (which exists by Theorem 3).

Suppose an intact node accepts statement 𝑎. Let 𝑣 be the first intact node to accept 𝑎. At the point 𝑣 accepts 𝑎, only befouled

nodes in 𝐵 can claim to accept it. Since by the corollary to Theorem 7, 𝐵 cannot be 𝑣-blocking, it must be that 𝑣 accepted 𝑎

through condition 1. Thus, 𝑣 identified a quorum 𝑈 such that every node claimed to vote for or accept 𝑎, and since 𝑣 is the first

intact node to accept 𝑎, it must mean all nodes in 𝑈 ं𝐵 voted for 𝑎. In other words, 𝑣 ratified 𝑎 in ܂𝐕,𝐐܂𝐵. Generalizing, any

statement accepted by an intact node in ܂𝐕,𝐐܂ must be ratified in ܂𝐕,𝐐܂𝐵. Because 𝐵 is a DSet, ܂𝐕,𝐐܂𝐵 enjoys quorum intersection.

Because additionally 𝐵 contains all ill-behaved nodes, Theorem 4 rules out ratification of contradictory statements.

5.4. Accepting is not enough

Unfortunately, for nodes to assume the truth of accepted statements would yield suboptimal safety and liveness guarantees in a

federated consensus protocol. We discuss the issues with safety and liveness in turn. To provide some context, we then explain

why these issues are thornier in FBA than in centralized Byzantine agreement.

5.4.1. Safety. Consider an FBAS ܂𝐕,𝐐 ܂ in which the only quorum is unanimous consent—i.e., Ȃ𝑣,𝐐(𝑣) = {𝐕}. This ought to be a

conservative choice for safety—don’t do anything unless everyone agrees. Yet since every node is 𝑣-blocking for every 𝑣, any

node can single-handedly convince any other node to accept arbitrary statements.

vote
accept

vote

vote

vote

/ 4 3 Sliceis3nodes,
includingself

a)

vote

vote
accept

vote

vote
vote

/ 3 4

b)

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 25

The problem is that accepted statements are only safe among intact nodes. But as discussed in Section 4.1, the only condition

necessary to guarantee safety is quorum intersection of well-behaved nodes, which might hold even in the case that some

wellbehaved nodes are befouled. In particular, when 𝐐(𝑣) = {𝐕}, the only DSets are ∅ and 𝐕, meaning any node failure befouls

the whole system. By contrast, quorum intersection holds despite every 𝐵 Ȃ 𝐕.

5.4.2. Liveness. Another limitation of accepted statements is that other intact nodes may be unable to accept them. This possibility

makes reliance on accepted statements problematic for liveness. If a node proceeds to act on a statement because it accepted

the statement, other nodes could be unable to proceed in a similar fashion.

Consider Figure 10a, in which node 𝑣3 crashes after helping 𝑣1 ratify and accept statement 𝑎. Though 𝑣1 accepts 𝑎, 𝑣2 and 𝑣4

cannot. In particular, from 𝑣2’s perspective, the situation depicted is indistinguishable from Figure 10b, in which 𝑣3 voted for 𝑎̀

and is well-behaved but slow to respond, while 𝑣1 is ill-behaved and sent 𝑣3 a vote for 𝑎̀ (thereby causing 𝑣3 to accept 𝑎̀) while

illegally also sending 𝑣2 a vote for 𝑎.

To support a protocol-level notion of liveness in cases like Figure 10a, 𝑣1 needs a way to ensure every other intact node can

eventually accept 𝑎 before 𝑣1 acts on 𝑎. Once this is the case, it makes sense to say the system agrees on 𝑎.

Definition (agree). An FBAS ܂𝐕,𝐐 ܂ agrees on a statement 𝑎 iff, regardless of what subsequently transpires, once sufficient

messages are delivered and processed, every intact node will accept 𝑎.

5.4.3. Comparison to centralized voting. To understand why the above issues arise in federated voting, consider a centralized Byzantine

agreement system of 𝑁 nodes with quorum size 𝑇 . Such a system enjoys quorum availability with 𝑓𝐿 = 𝑁 − 𝑇 or fewer node

failures. Since any two quorums share at least 2𝑇 −𝑁 nodes, quorum intersection of well-behaved nodes holds up to 𝑓𝑆 = 2𝑇 − 𝑁

− 1 Byzantine failures.

Centralized Byzantine agreement systems typically set 𝑁 = 3𝑓 + 1 and 𝑇 = 2𝑓 + 1 to yield 𝑓𝐿 = 𝑓𝑆 = 𝑓, the equilibrium point at

which safety and liveness have the same fault tolerance. If safety is more important than liveness, some protocols increase 𝑇 so

that 𝑓𝑆 > 𝑓𝐿 [Li and Mazieres 2007]. In FBA, because quorums arise organically,` systems are unlikely to find themselves at

equilibrium, making it far more important to protect safety in the absence of liveness.

Now consider a centralized system in which, because of node failure and contradictory votes, some node 𝑣 cannot ratify

statement 𝑎 that was ratified by other nodes. If 𝑣 hears 𝑓𝑆 + 1 nodes claim 𝑎 was ratified, 𝑣 knows that either one of them is

wellbehaved or all safety guarantees have collapsed. Either way, 𝑣 can act on 𝑎 with no loss of safety. The FBA equivalent would

be to hear from a set 𝐵 where 𝐵, if deleted, undermines quorum intersection of well-behaved nodes. Identifying such a 𝐵 is hard

for three reasons: one, quorums are discovered dynamically; two, ill-behaved nodes may lie about slices; and three, 𝑣 does not

know which nodes are well-behaved. Instead, we defined federated voting to accept 𝑎 when a 𝑣-blocking set does. The 𝑣-

blocking property has the advantage of being easily checkable, but is equivalent to hearing from 𝑓𝐿 + 1 nodes in a centralized

system when we really want 𝑓𝑆 + 1.

To guarantee agreement among all well-behaved nodes in a centralized system, one merely needs 𝑓𝐿 + 𝑓𝑆 + 1 nodes to

acknowledge that a statement was ratified. If more than 𝑓𝐿 of them fail, we do not expect liveness anyway. If 𝑓𝐿 or fewer fail,

then we know 𝑓𝑆 + 1 nodes remain willing to attest to ratification, which will in turn convince all other well-behaved nodes. The

reliance on 𝑓𝑆 has no easy analogue in the FBA model. Interestingly, however, 𝑓𝐿 + 𝑓𝑆 + 1 = 𝑇 , the quorum size, suggesting a

similar approach might work with a more complex justification.

Put another way, at some point nodes need to believe a statement strongly enough to depend on its truth for safety. A

centralized system offers two ways to reach this point for a statement 𝑎: ratify 𝑎 first-hand, or reason backwards from 𝑓𝑆 + 1

nodes claiming 𝑎 was ratified, figuring safety is hopeless if they have all lied. FBA lacks the latter approach; the only tool it has

for safety among well-behaved nodes is first-hand ratification. Since nodes still need a way to overcome votes against ratified

statements, we introduced a notion of accepting, but it provides a weaker consistency guarantee limited to intact nodes.

5.5. Statement confirmation

Both limitations of accepted statements stem from complications when a set of intact nodes 𝑆 votes against a statement 𝑎 that

is nonetheless ratified. Particularly in light of FBA’s non-uniform quorums, 𝑆 may prevent some intact node from ever ratifying 𝑣.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 26

To provide 𝑣 a means of accepting 𝑎 despite votes against it, the definition of accept has a second criterion based on 𝑣-blocking

sets. But the second criterion is weaker than ratification, offering no guarantees to befouled nodes that enjoy quorum

intersection.

Now suppose a statement 𝑎 has the property that no intact node ever votes against it. Then we have no need to accept 𝑎 and

can instead insist that nodes directly ratify 𝑎 before acting on it. We call such statements irrefutable.

Definition (irrefutable). A statement 𝑎 is irrefutable in an FBAS if no intact node can ever vote against it.

Theorem 8 tells us that two intact nodes cannot accept contradictory statements. Thus, while some intact nodes may vote

against a statement 𝑎 that was accepted by an intact node, the statement “an intact node accepted 𝑎” is irrefutable. This

suggests holding a second vote to ratify the fact that an intact node accepted 𝑎.

Definition (confirm). A quorum 𝑈𝑎 in an FBAS confirms a statement 𝑎 iff Ȃ𝑣 Ȃ 𝑈𝑎, 𝑣 claims to accept 𝑎. A node confirms 𝑎 iff

it is in such a quorum.

Nodes express that they have accepted statement 𝑎 by stating “accept(𝑎),” an abbreviation of the statement, “An intact node

accepted 𝑎.” To confirm 𝑎 means to ratify accept(𝑎). A well-behaved node 𝑣 can vote for accept(𝑎) only after accepting 𝑎, as 𝑣

cannot assume any particular other nodes are intact. If 𝑣 itself is befouled, accept(𝑎) might be false, in which case voting for it

may cost 𝑣 liveness, but a befouled node has no guarantee of liveness anyway.

The next theorem shows that nodes can rely on confirmed statements without losing optimal safety. Theorem 11 then shows

that confirmed statements meet the definition of agreement from Section 5.4.2, meaning nodes can rely on confirmed

statements without endangering the liveness of intact nodes.

THEOREM 9. Let ܂𝐕,𝐐 ܂ be an FBAS enjoying quorum intersection despite 𝐵, and suppose 𝐵 contains all ill-behaved

nodes. Let 𝑣1 and 𝑣2 be two nodes not in 𝐵. Let 𝑎 and 𝑎̀ be contradictory statements. If 𝑣1 confirms 𝑎, then 𝑣2 cannot

confirm 𝑎̀.

PROOF. First note that accept(𝑎) contradicts accept(𝑎̀)—no well-behaved node can vote for both. Note further that 𝑣1 must ratify

accept(𝑎) to confirm 𝑎. By Theorem 5, 𝑣2 cannot ratify accept(𝑎̀) and hence cannot confirm 𝑎̀.

THEOREM 10. Let 𝐵 be the set of befouled nodes in an FBAS ܂𝐕,𝐐 ܂ with quorum intersection. Let 𝑈 be a quorum

containing an intact node (𝑈 Ȃ 𝐵), and let 𝑆 be any set such that 𝑈 Ȃ 𝑆 Ȃ 𝐕. Let 𝑆+ = 𝑆 ं 𝐵 be the set of intact nodes in

𝑆, and let 𝑆− = (𝐕 ं 𝑆) ं 𝐵 be the set of intact nodes not in 𝑆. Either 𝑆− = ∅, or Ȃ𝑣 Ȃ 𝑆− such that 𝑆+ is 𝑣-blocking.

PROOF. If 𝑆+ is 𝑣-blocking for some 𝑣 Ȃ 𝑆−, then we are done. Otherwise, we must show 𝑆− = ∅. If 𝑆+ is not 𝑣-blocking for any 𝑣 Ȃ 𝑆−,

then, by Theorem 7, either 𝑆− = ∅ or 𝑆− is a quorum in ܂𝐕,𝐐܂𝐵. In the former case we are done, while in the latter we get a

contradiction: By Theorem 1, 𝑈 ं 𝐵 is a quorum in ܂𝐕,𝐐܂𝐵. Since 𝐵 is a DSet (by Theorem 3), ܂𝐕,𝐐܂𝐵 must enjoy quorum

intersection, meaning 𝑆− Ȃ(𝑈 ं 𝐵) Ȃ ∅. This is impossible, since (𝑈 ं 𝐵) Ȃ 𝑆 and 𝑆− Ȃ 𝑆 = ∅.

THEOREM 11. If an intact node in an FBAS ܂𝐕,𝐐 ܂ with quorum intersection confirms a statement 𝑎, then, whatever

subsequently transpires, once sufficient messages are delivered and processed, every intact node will accept and

confirm 𝑎.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 27

 Fig. 11. Possible states of an accepted statement 𝑎 at a single node 𝑣

 Fig. 12. Possible system-wide status of a statement 𝑎

PROOF. Let 𝐵 be the DSet of befouled nodes and let 𝑈 Ȃ 𝐵 be the quorum through which an intact node confirmed 𝑎. Let nodes in

𝑈 ं 𝐵 broadcast accept(𝑎). By definition, any node 𝑣, regardless of how it has voted, accepts 𝑎 after receiving accept(𝑎) from a

𝑣-blocking set. Hence, these messages may convince additional nodes to accept 𝑎. Let these additional nodes in turn broadcast

accept(𝑎) until a point is reached at which, regardless of future communication, no further intact nodes can ever accept 𝑎. At

this point let 𝑆 be the set of nodes that claim to accept 𝑎 (where 𝑈 Ȃ 𝑆), let 𝑆+ be the set of intact nodes in 𝑆, and let 𝑆− be the set

of intact nodes not in 𝑆. 𝑆+ cannot be 𝑣-blocking for any node in 𝑆−, or else more nodes could come to accept 𝑎. By Theorem 10,

then, 𝑆− = ∅, meaning every intact node has accepted 𝑎.

Figure 11 summarizes the paths an intact node 𝑣 can take to confirm 𝑎. Given no knowledge, 𝑣 might vote for either 𝑎 or the

contradictory 𝑎̀. If 𝑣 votes for 𝑎̀, it cannot later vote for 𝑎, but can nonetheless accept 𝑎 if a 𝑣-blocking set accepts it. A

subsequent quorum of confirmation messages allows 𝑣 to confirm 𝑎, which by Theorem 11 means the system agrees on 𝑎.

5.6. Liveness and neutralization

The main challenge of distributed consensus, whether centralized or not, is that a statement can get stuck in a permanently

indeterminate state before the system reaches agreement on it. Hence, a protocol must not attempt to ratify externalized values

directly. Should the statement “The value of slot 𝑖 is 𝑥” get stuck, the system will be forever unable to agree on slot 𝑖, losing

liveness. The solution is to craft the statements in votes carefully. It must be possible to break a stuck statement’s hold on the

question we really care about, namely slot contents. We call the process of obsoleting a stuck statement neutralization.

Local state System-wide status of 𝑎

uncommitted unknown (any)

voted 𝑎 unknown (any)

voted 𝑎̀ unknown (any)

accepted 𝑎 stuck, 𝑎-valent, or 𝑎 agreed

confirmed 𝑎 𝑎 agreed
 Fig. 13. What an intact node knows about the status of statement 𝑎

More concretely, Figure 12 depicts the potential status a statement 𝑎 can have system-wide. Initially, the system is bivalent, by

which we mean there is one sequence of possible events through which all intact nodes will accept 𝑎, and another sequence

quorumsatisfying
eachvotesoraccepts

quorumsatisfying
confirms

 isvalid

 - blockingset
accepts

uncommitted

voted accepted confirmed

voted

bivalent

 - valent

 - valent

stuck

 agreed

 agreed

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 28

through which all intact nodes will reject 𝑎 (i.e., accept a statement 𝑎̀ contradicting 𝑎). At some point, one of these two

outcomes may cease to be possible. If no intact node can ever reject 𝑎, we say the system is 𝑎-valent; conversely, if no intact

node can ever accept 𝑎, we say the system is 𝑎̀-valent.

At the time an FBAS transitions from bivalent to 𝑎-valent, there is a possible outcome in which all intact nodes accept 𝑎.

However, this might not remain the case. Consider a PBFT-like four-node system {𝑣1,…,𝑣4} in which any three nodes constitute a

quorum. If 𝑣1 and 𝑣2 vote for 𝑎, the system becomes 𝑎-valent; no three nodes can ratify a contradictory statement. However, if

𝑣3 and 𝑣4 subsequently vote for 𝑎̀ contradicting 𝑎, it also becomes impossible to ratify 𝑎. In this case, 𝑎’s state is permanently

indeterminate, or stuck.

As seen in Figure 10a, even once an intact node accepts 𝑎, the system may still fail to reach system-wide agreement on 𝑎.

However, by Theorem 11, once an intact node confirms 𝑎, all intact nodes can eventually come to accept it; hence the system

has agreed upon 𝑎. Figure 13 summarizes what intact nodes know about the global state of a statement from their own local

state.

To preserve the possibility of consensus, a protocol must ensure that every statement is either irrefutable, and hence cannot get

stuck, or neutralizable, and hence cannot block progress if stuck. There are two popular approaches to crafting neutralizable

statements: the view-based approach, pioneered by viewstamped replication [Oki and Liskov 1988] and favored by PBFT

[Castro and Liskov 1999]; and the ballot-based approach, invented by Paxos [Lamport 1998]. The ballot-based approach may be

harder to understand [Ongaro and Ousterhout 2014]. Compounding confusion, people often call viewstamped replication

“Paxos” or assert that the two algorithms are the same when they are not [van Renesse et al. 2014].

View-based protocols associate the slots in votes with monotonically increasing view numbers. Should consensus get stuck on

the 𝑖th slot in view 𝑛, nodes recover by agreeing that view 𝑛 had fewer than 𝑖 meaningful slots and moving to a higher view

number. Ballot-based protocols associate the values in votes with monotonically increasing ballot numbers. Should a ballot get

stuck, nodes retry the same slot with a higher ballot, taking care never to select values that would contradict prior stuck ballots.

This work takes a ballot-based approach, as doing so makes it easier to do away with the notion of a distinguished primary node

or leader. For example, leader behavior can be emulated [Lamport 2011b].

6. SCP: A FEDERATED BYZANTINE AGREEMENT PROTOCOL

This section presents the Stellar Consensus Protocol, SCP. At a high level, SCP consists of two sub-protocols: a nomination

protocol and a ballot protocol. The nomination protocol produces candidate values for a slot. If run long enough, it eventually

produces the same set of candidate values at every intact node, which means nodes can combine the candidate values in a

deterministic way to produce a single composite value for the slot. There are two huge caveats, however. First, nodes have no

way of knowing when the nomination protocol has reached the point of convergence. Second, even after convergence, ill-

behaved nodes may be able to reset the nomination process a finite number of times.

When nodes guess that the nomination protocol has converged, they execute the ballot protocol, which employs federated

voting to commit and abort ballots associated with composite values. When intact nodes agree to commit a ballot, the value

associated with the ballot will be externalized for the slot in question. When they agree to abort a ballot, the ballot’s value

becomes irrelevant. If a ballot gets stuck in a state where one or more intact nodes cannot commit or abort it, then nodes try

again with a higher ballot; they associate the new ballot with the same value as the stuck one in case any node believes the stuck

ballot was committed. Intuitively, safety results from ensuring that all stuck and committed ballots are associated with the same

value. Liveness follows from the fact that a stuck ballot can be neutralized by moving to a higher ballot.

The remainder of this section presents the nomination and ballot protocols. Each is described first in terms of conceptual

statements, then as a concrete protocol with messages representing sets of conceptual statements. Finally, Section 6.3 shows

the correctness of the protocol. SCP treats each slot completely independently and can be viewed as many separate instances of

a single-slot consensus protocol (akin to the “single-decree synod” in Paxos [Lamport 1998]). Concepts such as candidate values

and ballots must always be interpreted in the context of a particular slot even if much of the discussion leaves the slot implicit.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 29

6.1. Nomination protocol

Because slots need only be partially ordered, some applications of SCP will have only one plausible ballot per slot. For example,

in certificate transparency, each CA may have its own series of slots and sign exactly one certificate tree per slot. However, other

applications admit many plausible values per slot, in which case it is helpful to narrow down the possible input values. Our

strategy is to begin with a synchronous nomination protocol that achieves consensus under certain timing assumptions, and feed

the output of the nomination protocol into an asynchronous ballot protocol whose safety does not depend on timing [Lamport

2011a]. Such an initial synchronous phase is sometimes called a conciliator [Aspnes 2010].

The nomination protocol works by converging on a set of candidate values for a slot. Nodes then deterministically combine these

candidates into a single composite value for the slot. Exactly how to combine values depends on the application. By way of

example, the Stellar network uses SCP to choose a set of transactions and a ledger timestamp for each slot. To combine

candidate values, Stellar takes the union of their transaction sets and the maximum of their timestamps. (Values with invalid

timestamps will not receive enough nominations to become candidates.) Other possible approaches include combining sets by

intersection or simply picking the candidate value with the highest hash.

Nodes produce a candidate value 𝑥 through federated voting on the statement nominate 𝑥.

Definition (candidate). A node 𝑣 considers a value 𝑥 to be a candidate when 𝑣 has confirmed the statement nominate 𝑥—

i.e., 𝑣 has ratified accept(nominate 𝑥).

So long as node 𝑣 has no candidate values, 𝑣 may vote in favor of nominate 𝑥 for any value 𝑥 that passes application-level

validity checks (such as timestamps not being in the future). In fact, 𝑣 should generally re-nominate any values that it sees other

nodes nominate, with some rate-limiting discussed below to avoid an explosion of candidates. As soon as 𝑣 has a candidate

value, however, it must cease voting to nominate 𝑥 for any new values 𝑥. It should still continue to accept nominate

statements for new values (when accepted by a 𝑣-blocking set) and confirm new nominate statements as prescribed by the

federated voting procedure.

The nomination protocol enjoys several properties when a system has intact nodes (meaning it has avoided complete failure).

Specifically, for each slot:

(1) Intact nodes can produce at least one candidate value.

(2) At some point, the set of possible candidate values stops growing.

(3) If any intact node considers 𝑥 to be a candidate value, then eventually every intact node will consider 𝑥 to be a candidate
value.

Now consider how the nomination protocol achieves its three properties. Property 1 is achieved because nominate statements

are irrefutable. Nodes never vote against nominating a particular value, and until the first candidate value is confirmed, intact

nodes can vote to nominate any value. So long as any value 𝑥 passes application-level validity checks, intact nodes can vote for

and confirm nominate 𝑥. Property 2 is ensured because once each intact node confirms at least one candidate value—which

will happen in a finite amount of time—no intact nodes will vote to nominate any new values. Hence, the only values that can

become candidates are those that already have votes from intact nodes. Property 3 is a direct consequence of Theorem 11.

The nomination process will be more efficient if fewer combinations of values are in play. Hence, we assign nodes a temporary

priority and have each node, when possible, nominate the same values as a higher-priority node. More concretely, let 𝐻 be a

cryptographic hash function whose range can be interpreted as a set of integers {0,…,Ămax − 1}. (𝐻 might be SHA-256 [National

Institute of Standards and Technology 2012], in which case Ămax = 2256.) Let 𝐺𝑖(𝑚) = 𝐻(𝑖,𝑥𝑖−1,𝑚) be a slot-specific hash function for

slot 𝑖, where 𝑥𝑖−1 is the value chosen for the slot preceding 𝑖 (or the sorted set of values of all immediate dependencies of slot 𝑖

when slots are governed by a partial order). Given a slot 𝑖 and a round number 𝑛, each node 𝑣 computes a set of neighbors

and a priority for each neighbor as follows:

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 30

||{𝑞 Ȃ 𝑞 Ȃ 𝐐(𝑣) Ȃ 𝑣′ Ȃ 𝑞 }|| weight(𝑣,𝑣′) = | |

 { |||𝐐(𝑣)||| }

 neighbors(𝑣,𝑛) = 𝑣′ Ȃ 𝐺𝑖(N,𝑛,𝑣′) < Ămax Ȃ weight(𝑣,𝑣′)

priority(𝑛,𝑣′) = 𝐺𝑖(P,𝑛,𝑣′)

N and P are constants to produce two different hash functions. The function weight(𝑣,𝑣′) returns the fraction of slices in 𝐐(𝑣)

containing 𝑣′. By using weight as the probability over 𝑛 that 𝑣′ appears in neighbors(𝑣,𝑛), we also reduce the chance that nodes

without a lot of trust will dominate a round.

Each node 𝑣 should initially find a node 𝑣0 Ȃ neighbors(𝑣,0) that maximizes priority(0,𝑣0) among nodes it can communicate

with, then vote to nominate the same values as 𝑣0. Only if 𝑣 = 𝑣0 should 𝑣 introduce a new value to nominate. 𝑣 should use

timeouts to decide on new nominate statements to vote for. After 𝑛 timeouts, 𝑣 should

Variable Meaning

𝑋 The set of values node 𝑣 has voted to nominate

𝑌 The set of values node 𝑣 has accepted as nominated

𝑍 The set of values that node 𝑣 considers candidate values

𝑁 The set of the latest NOMINATE message received from each node

 Fig. 14. Nomination state maintained by node 𝑣 for each slot

NOMINATE 𝑣 𝑖 𝑋 𝑌 𝐷
This is a message from node 𝑣 nominating values for slot 𝑖. 𝐷 is 𝑣’s quorum slice
𝐐(𝑣) or a collision-resistant hash of 𝐐(𝑣). 𝑋 and 𝑌 are from 𝑣’s state. The
concrete message encodes the following conceptual messages:

 — {nominate 𝑥 Ȃ 𝑥 Ȃ 𝑋 } (votes to nominate each value in 𝑋)

 — {accept(nominate 𝑥) Ȃ 𝑥 Ȃ 𝑌 } (votes to confirm nominations in 𝑌)
 Fig. 15. Message in nomination protocol

find a node 𝑣𝑛 Ȃ neighbors(𝑣,𝑛) maximizing priority(𝑛,𝑣𝑛) and vote to nominate everything 𝑣𝑛 has voted to nominate.

THEOREM 12. Eventually, all intact nodes will have the same composite value.

PROOF. The theorem follows from the three properties of the nomination protocol. Each intact node will only ever vote to

nominate a finite number of ballots. In the absence of action by ill-behaved nodes, intact nodes will converge on the same set of

candidate values, call it 𝑍. To forestall this convergence, ill-behaved nodes may introduce new candidate values, which for a

period may be candidates at some but not all intact nodes. Such values will need to have garnered votes from well-behaved

nodes, however, which limits them to a finite set. Eventually, ill-behaved nodes will either stop perturbing the system or run out

of new candidate values to inject, in which case intact nodes will converge on 𝑍.

6.1.1. Concrete nomination protocol. Figure 14 lists the nomination protocol state a node 𝑣 must maintain for each slot. 𝑋 is the set of

values 𝑥 for which 𝑣 has voted nominate 𝑥, 𝑌 is the set of values for which 𝑣 has accepted nominate 𝑥, and 𝑍 is the set of

candidate values—i.e., all values for which a quorum including 𝑣 has stated accept(nominate 𝑥). Finally, 𝑣 maintains 𝑁, the

latest concrete message from each node. (Technically, 𝑋, 𝑌 , and 𝑍 can all be recomputed from 𝑁, but it is convenient to be able

to reference them directly.) All four fields are initialized to the empty set. Note that all three of 𝑋, 𝑌 , and 𝑍 are growing over

time—nodes never remove a value from these sets.

Figure 15 shows the concrete message that constitutes the nomination protocol. Because 𝑋 and 𝑌 grow monotonically over

time, it is possible to determine which of multiple NOMINATE messages from the same node is the latest, independent of network

delivery order, so long as 𝐷 does not change mid-nomination (or 𝐷 has to be versioned). Only one remote procedure call (RPC) is

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 31

needed for nomination—the argument is the sender’s latest NOMINATE message and the return value is the receiver’s. If 𝐷 or the

nominated values are cryptographic hashes, a second RPC should permit retrieval of uncached hash preimages as needed.

Because nodes cannot tell when the nomination protocol is complete anyway, SCP must cope with different composite values at

different nodes. As an optimization, then, nodes can attempt to predict the final composite value before they even have a

candidate value. To do this, the composite value can be taken as combine(𝑍) when 𝑍 Ȃ ∅, otherwise combine(𝑌) when 𝑌 Ȃ ∅,

otherwise combine(𝑋) when 𝑋 Ȃ ∅. This means the highest-priority node can optimistically initiate balloting at the same time as

nomination, piggybacking its first ballot message PREPARE (described below) on its first NOMINATE message.

6.2. Ballot protocol

Once nodes have a composite value, they engage in the ballot protocol, though nomination may continue to update the

composite value in parallel. A ballot 𝑏 is a pair of the form 𝑏 = ܂𝑛,𝑥܂, where 𝑥 Ȃ Ȃ is a value and 𝑏 is a referendum on externalizing

𝑥 for the slot in question. The value 𝑛 Ȃ 1 is a counter to ensure higher ballot numbers are always available. We use C-like

notation 𝑏.𝑛 and 𝑏.𝑥 to denote the counter and value fields of ballot 𝑏, so that 𝑏 = ܂𝑏.𝑛,𝑏.𝑥܂. Ballots are totally ordered, with 𝑏.𝑛

more significant than 𝑏.𝑥. For convenience, a special invalid null ballot 𝟎 = 0܂,Ȃ ܂ is less than all other ballots, and a special counter

value Ȃ is greater than all other counters.

We speak of committing and aborting a ballot 𝑏 as a shorthand for using federated voting to agree on the statements commit 𝑏

and abort 𝑏, respectively. For a given ballot, commit and abort are contradictory, so a well-behaved node may vote for at most

one

of them. In the notation of Section 5, the opposite of commit 𝑏 would be “ commit 𝑏,” but abort 𝑏 is a more intuitive notation.

Because at most one value can be chosen for a given slot, all committed and stuck ballots must contain the same value. Roughly

speaking, this means commit statements are invalid if they conflict with lower-numbered unaborted ballots.

Definition (compatible). Two ballots 𝑏1 and 𝑏2 are compatible, written 𝑏1 Ȃ 𝑏2, iff 𝑏1.𝑥 = 𝑏2.𝑥 and incompatible, written 𝑏1 Ȃ

𝑏2, iff 𝑏1.𝑥 Ȃ 𝑏2.𝑥. We also write 𝑏1 Ȃ 𝑏2 or 𝑏2 Ȃ 𝑏1 iff 𝑏1 Ȃ 𝑏2 (or equivalently 𝑏2 Ȃ 𝑏1) and 𝑏1 Ȃ 𝑏2. Similarly, 𝑏1 Ȃ 𝑏2 or 𝑏2 Ȃ 𝑏1 means

𝑏1 Ȃ 𝑏2 (or equivalently 𝑏2 Ȃ 𝑏1) and 𝑏1 Ȃ 𝑏2.

Definition (prepared). A ballot 𝑏 is prepared iff every statement in the following set is true: {abort 𝑏old Ȃ 𝑏old Ȃ 𝑏}.

More precisely, then, commit 𝑏 is valid to vote for only if 𝑏 is confirmed prepared, which nodes ensure through federated

voting on the corresponding abort statements. It is convenient to vote on these statements en masse, so wherever we write “𝑏

is prepared,” the surrounding context applies to the whole set of abort statements. In particular, a node votes, accepts, or

confirms that 𝑏 is prepared iff it votes for, accepts, or confirms, respectively, all of these aborts.

To commit a ballot 𝑏 and externalize its value 𝑏.𝑥, SCP nodes first accept and confirm 𝑏 is prepared, then accept and confirm

commit 𝑏. Before the first intact node votes for commit 𝑏, the prepare step, through federated voting, ensures all intact nodes

can eventually confirm 𝑏 is prepared. When an intact node 𝑣 accepts commit 𝑏, it means 𝑏.𝑥 will eventually be chosen.

However, as discussed in Section 5.4.1, 𝑣 must confirm commit before acting on it in case 𝑣 is befouled.

6.2.1. Concrete ballot protocol. Figure 16 illustrates the per-slot state maintained by each node. A node 𝑣 stores: its current phase 𝜑;

its current ballot 𝑏; the two most recent incompatible ballots it has prepared (𝑝,𝑝′); the lowest (𝑐) and highest (Ă) ballot, if any, it

has voted to commit and for which it has not subsequently accepted an abort (or for which it has accepted or confirmed a

commit in later phases); a next value 𝑧 to try if the current ballot fails; and the latest message received from each node (𝑀).

Ballots 𝑏, 𝑝, 𝑝′, and Ă are non-decreasing within a phase. In addition, if 𝑐 Ȃ 𝟎—meaning 𝑣 may

Variable Meaning

𝜑 Current phase: one of PREPARE, CONFIRM, or EXTERNALIZE

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 32

𝑏 Current ballot that node 𝑣 is attempting to prepare and commit (𝑏 Ȃ𝟎)

𝑝′,𝑝 The two highest ballots accepted as prepared such that 𝑝′ Ȃ 𝑝, where 𝑝′

= 𝟎 or 𝑝 = 𝑝′ = 𝟎 if there are no such ballots

𝑐,Ă In PREPARE: Ă is the highest ballot confirmed as prepared, or 𝟎 if none; if 𝑐
Ȃ𝟎, then 𝑐 is lowest and Ă the highest ballot for which 𝑣
has voted commit and not accepted abort.

In CONFIRM: lowest, highest ballot for which 𝑣 accepted commit In

EXTERNALIZE: lowest, highest ballot for which 𝑣 confirmed commit

Invariant: if 𝑐 Ȃ𝟎, then 𝑐 Ȃ Ă Ȃ 𝑏.

𝑧 Value to use in next ballot. If Ă = 𝟎, then 𝑧 is the composite value (see

Section 6.1); otherwise, 𝑧 = Ă.𝑥.

𝑀 Set of the latest ballot message seen from each node

 Fig. 16. Ballot state maintained by each node 𝑣 for each slot

PREPARE 𝑣 𝑖 𝑏 𝑝 𝑝′ 𝑐.𝑛 Ă.𝑛 𝐷

This is a message from node 𝑣 about slot 𝑖. 𝐷 specifies 𝐐(𝑣). The other fields
reflect 𝑣’s state. Values 𝑐.𝑥 and Ă.𝑥 are elided as 𝑐.𝑥 = Ă.𝑥 = 𝑏.𝑥 when 𝑐.𝑛 Ȃ 0.
This concrete message encodes a host of conceptual statements, as follows:

 — {abort 𝑏′ Ȃ accept(abort 𝑏′) Ȃ 𝑏′ Ȃ 𝑏} (a vote to prepare 𝑏)

 — {accept(abort 𝑏′) Ȃ 𝑏′ Ȃ 𝑝} (a vote to confirm 𝑝 is prepared)

 — {accept(abort 𝑏′) Ȃ 𝑏′ Ȃ 𝑝′ } (a vote to confirm 𝑝′ is prepared)

 — {commit 𝑏′ Ȃ 𝑐.𝑛 Ȃ 0 Ȃ 𝑐 Ȃ 𝑏′ Ȃ Ă} (a vote to commit 𝑐,…,Ă if 𝑐 Ȃ𝟎)

CONFIRM 𝑣 𝑖 𝑏 𝑝.𝑛 𝑐.𝑛 Ă.𝑛 𝐷

Sent by 𝑣 to try to externalize 𝑏.𝑥 for slot 𝑖 after accepting a commit. Implies

𝑝.𝑥 = 𝑐.𝑥 = Ă.𝑥 = 𝑏.𝑥 in 𝑣’s state. For convenience, we also say 𝑝′ = 𝟎 (𝑝′ is

irrelevant after accepting commit). 𝐷 specifies 𝐐(𝑣) as above. Encodes:

— Everything implied by PREPARE 𝑣 𝑖 ܂Ȃ,𝑏.𝑥 ܂ 𝑝 𝟎 𝑐.𝑛 Ȃ 𝐷

 — {accept(commit 𝑏′) Ȃ 𝑐 Ȃ 𝑏′ Ȃ Ă} (a vote to confirm commit 𝑐,…,Ă)

EXTERNALIZE 𝑣 𝑖 𝑥 𝑐.𝑛 Ă.𝑛 𝐷

After 𝑣 confirms commit ܂𝑐.𝑛,𝑥 ܂ for slot 𝑖 and externalizes value 𝑥, this message

helps other nodes externalize 𝑥. Implies 𝑐 = ܂𝑐.𝑛,𝑥 ܂ and Ă = ܂Ă.𝑛,𝑥܂. For

convenience, we also say 𝑏 = 𝑝 = Ă = ܂Ȃ,𝑥܂, and 𝑝′ = 𝟎. Encodes:

— Everything implied by CONFIRM 𝑣 𝑖 ܂Ȃ,𝑥 ܂ Ȃ 𝑐.𝑛 Ȃ 𝐷

— Everything implied by CONFIRM 𝑣 𝑖 ܂Ȃ,𝑥 ܂ Ȃ 𝑐.𝑛 Ă.𝑛 {{𝑣}}
 Fig. 17. Messages in SCP’s ballot protocol

have participated in ratifying commit 𝑐—code must ensure 𝑐 Ȃ Ă Ȃ 𝑏. This invariant guarantees a node can always legally vote to

prepare its current ballot 𝑏.

Figure 17 shows the three ballot protocol messages, with 𝜑 determining which one of the three a node can send. Ballot

messages may overlap with nomination messages, so that, when Ă = 𝟎, a node may update 𝑧 in response to a NOMINATE message.

Note that “𝑎 Ȃ accept(𝑎)” is what each node must assert for a quorum to accept 𝑎 under condition 1 of the definition of accept.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 33

For convenience, when comparing state across nodes, we will identify fields belonging to particular nodes with subscripts. If 𝑣 is

a node, then we write 𝑏𝑣,𝑝𝑣,𝑝′
𝑣,… to denote the values of 𝑏,𝑝,𝑝′,… in node 𝑣’s state as described in Figure 16. Similarly, we let 𝑣𝑚

denote message 𝑚’s sender, and 𝑏𝑚,𝑝𝑚,𝑝′
𝑚,… denote the corresponding values of 𝑏,𝑝,𝑝′,… in 𝑣𝑚’s state as implied by 𝑚.

Each node initializes its ballot state for a slot by setting 𝜑 Ă PREPARE, 𝑧 Ă Ȃ,

𝑏 Ă 0܂,𝑧܂, 𝑀 Ă ∅, and all other fields (𝑝,𝑝′,𝑐,Ă) to the invalid ballot 𝟎. While 𝑧 = Ȃ, a node can receive but not send ballot

messages. Once 𝑧 Ȃ Ȃ, if 𝑏.𝑛 = 0, a node reinitializes 𝑏 Ă 1܂,𝑧 ܂ to start sending messages. Nodes then repeatedly exchange

messages with peers, sending whichever ballot message is indicated by 𝜑. Upon adding a newly received message 𝑚 to 𝑀𝑣, a

node 𝑣 updates its state as follows:

(1) If 𝜑 = PREPARE and 𝑚 lets 𝑣 accept new ballots as prepared, update 𝑝 and 𝑝′. Afterwards, if either 𝑝 Ȃ Ă or 𝑝′ Ȃ Ă, then set 𝑐
Ă𝟎.

(2) If 𝜑 = PREPARE and 𝑚 lets 𝑣 confirm new higher ballots prepared, then raise Ă to the highest such ballot and set 𝑧 Ă Ă.𝑥.

(3) If 𝜑 = PREPARE, 𝑐 = 𝟎, 𝑏 Ȃ Ă, and neither 𝑝 Ȃ Ă nor 𝑝′ Ȃ Ă, then set 𝑐 to the lowest ballot satisfying 𝑏 Ȃ 𝑐 Ȃ Ă.

(4) If 𝜑 = PREPARE and 𝑣 accepts commit for one or more ballots, set 𝑐 to the lowest such ballot, then set Ă to the highest ballot

such that 𝑣 accepts all {commit 𝑏′ Ȃ 𝑐 Ȃ 𝑏′ Ȃ Ă}, and set 𝜑 Ă CONFIRM. Also set 𝑧 Ă Ă.𝑥 after updating Ă, and unless Ă Ȃ 𝑏, set

𝑏 Ă Ă.

(5) If 𝜑 = CONFIRM and the received message lets 𝑣 accept new ballots prepared, raise 𝑝 to the highest accepted prepared ballot
such that 𝑝 Ȃ 𝑐.

(6) If 𝜑 = CONFIRM and 𝑣 accepts more commit messages or raises 𝑏, then let Ă′ be the highest ballot such that 𝑣 accepts all
{commit 𝑏′ Ȃ 𝑏 Ȃ 𝑏′ Ȃ Ă′ } (if any). If there exists such an Ă′ and Ă′ > Ă, then set Ă Ă Ă′, and, if necessary, raise 𝑐 to the lowest
ballot such that 𝑣 accepts all {commit 𝑏′ Ȃ 𝑐 Ȃ 𝑏′ Ȃ Ă}.

(7) If 𝜑 = CONFIRM and 𝑣 confirms commit 𝑐′ for any 𝑐′, set 𝑐 and Ă to the lowest and highest such ballots, set 𝜑 Ă EXTERNALIZE,
externalize 𝑐.𝑥, and terminate.

(8) If 𝜑 Ȃ {PREPARE, CONFIRM} and 𝑏 < Ă, then set 𝑏 Ă Ă.

(9) If 𝜑 Ȃ {PREPARE, CONFIRM} and Ȃ𝑆 Ȃ 𝑀𝑣 such that the set of senders {𝑣𝑚′ Ȃ 𝑚′ Ȃ 𝑆 } is 𝑣-blocking and Ȃ𝑚′ Ȃ 𝑆, 𝑏𝑚′.𝑛 > 𝑏𝑣.𝑛, then

set 𝑏 Ă ܂𝑛,𝑧܂, where 𝑛 is the lowest counter for which no such 𝑆 exists. Repeat the previous steps after updating 𝑏.

While 𝑐 = 𝟎, the above protocol implements federated voting to confirm 𝑏 is prepared. Once 𝑐 Ȃ𝟎, the protocol implements

federated voting on commit 𝑐′ for every 𝑐 Ȃ 𝑐′ Ȃ Ă. For the CONFIRM phase, once a well-behaved node accepts commit 𝑐, the node

never accepts, and hence never attempts to confirm, commit 𝑐′ for any 𝑐′ Ȃ 𝑐. Once a commit is confirmed, the value of its

ballot is safe to externalize assuming quorum intersection.

All messages sent by a particular node are totally ordered by ܂𝜑,𝑏,𝑝,𝑝′,Ă܂, with 𝜑 the most significant and Ă the least significant

field. The values of these fields can be determined from messages, as described in Figure 17. All PREPARE messages precede all

CONFIRM messages, which in turn precede the single EXTERNALIZE message for a given slot. The ordering makes it possible to ensure

𝑀 contains only the latest ballot from each node without relying on timing to order the messages, since the network may re-

order messages.

A few details of the protocol merit explanation. The statements implied by PREPARE of the form “abort 𝑏′ Ȃ accept(abort 𝑏′)” do

not specify whether 𝑣 is voting for or confirming abort 𝑏′. The distinction is unimportant for the definition of accept. Glossing

over the distinction allows 𝑣 to forget about old ballots it voted to commit (and hence cannot vote to abort), so long as it

accepted an abort message for them. Indeed, the only time 𝑣 modifies 𝑐 when 𝑐 Ȃ 𝟎 is to set it back to 𝟎 after accepting abort

for every ballot it is voting to commit in step 1 on the preceding page. Conversely, the only time 𝑣 modifies 𝑐 when 𝑐 = 𝟎 is to

set it to a value 𝑐 Ȃ 𝑏 in step 3. Because nodes never vote abort 𝑐 for any 𝑐 Ȃ 𝑏, no past abort votes can conflict with commit 𝑐.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 34

Theorem 11 requires that nodes rebroadcast what they have accepted. It follows from the definition of prepare that the two

highest incompatible ballots a node has accepted as prepared subsume all ballots the node has accepted as prepared. Hence,

including 𝑝 and 𝑝′ in every message ensures that nodes converge on Ă—a confirmed prepared ballot. Note further that the

ballots a node accepts as prepared must be a superset of the ballots the node confirms as prepared; hence, step 2 can never

set Ă such that Ă Ȃ 𝑐 Ȃ𝟎, as step 1 will set 𝑐 Ă𝟎 if the new Ă is incompatible with the old 𝑐.

At the time 𝑣 sends an EXTERNALIZE message, it has accepted {commit 𝑏′ Ȃ 𝑏′ Ȃ 𝑐 }. More importantly, however, it has confirmed

{commit 𝑏′ Ȃ 𝑐 Ȃ 𝑏′ Ȃ Ă}. 𝑣 can assert its acceptance of confirmed statements without regard to 𝐐(𝑣), because it has already

checked that one of its slices unanimously agrees; this explains the appearance of {{𝑣}} in place of 𝐷 for the second implicit

CONFIRM message in the description of EXTERNALIZE. Eliminating 𝐷 allows a single static EXTERNALIZE message to help other nodes catch

up arbitrarily far in the future, even if quorum slices have changed significantly in the meantime.

Only one RPC is needed to exchange ballot messages. The argument is the sender’s latest message and the return value is the

receiver’s latest message. As with NOMINATE, if 𝐷 or the values 𝑥 in ballots are cryptographic hashes, then a separate RPC is

needed to retrieve uncached hash preimages.

6.2.2. Timeouts and ballot updates. If all intact nodes start with the same ballot 𝑏, then steps 1 to 9 on the previous page are sufficient

to confirm commit 𝑏 and externalize value 𝑏.𝑥. Unfortunately, if the ballot protocol starts before the nomination protocol has

converged, nodes may start off with different values for 𝑧. If a ballot fails, or takes long enough that it may fail because of

unresponsive nodes, then nodes must time out and try again with a higher ballot. For this reason, nodes employ a timer as

follows:

(a) A node 𝑣 with 𝜑𝑣 Ȃ EXTERNALIZE arms a timer whenever Ȃ𝑆 Ȃ 𝑀𝑣 such that the set of senders 𝑈 = {𝑣𝑚 Ȃ 𝑚 Ȃ 𝑆 } is a quorum, 𝑣

Ȃ 𝑈, and Ȃ𝑚 Ȃ 𝑆, 𝑏𝑚.𝑛 Ȃ 𝑏𝑣.𝑛. (b) If the timer fires, 𝑣 updates its ballot by setting 𝑏𝑣 Ă ܂𝑏𝑣.𝑛 + 1,𝑧𝑣܂.

Different nodes may start ballots at different times. However, condition (a) delays setting a timer at a node 𝑣 that has gotten

ahead of a quorum. Conversely, step 9 on the preceding page allows nodes that have fallen too far behind to catch up without

waiting for timers. Taken together, these rules ensure that given long enough timers, intact nodes will spend time together on

the same ballot; moreover, this time will grow proportionally to the timer duration. To ensure timeouts are long enough without

predicting latencies, an implementation can increase the timeout as a function of 𝑏.𝑛.

6.3. Correctness

An SCP node cannot vote to confirm commit 𝑏 until it has voted to confirm abort for all lower-numbered incompatible ballots.

Because a well-behaved node cannot accept (and hence vote to confirm) contradictory statements, this means that for a given

 Theorem 5 ensures a set 𝑆 of well-behaved nodes cannot externalize contradictory values so long as 𝑆 enjoys quorum ,܂𝐕,𝐐܂

intersection despite 𝐕 ं 𝑆. This safety holds if 𝐕 and 𝐐 change only between slots, but what if they change mid-slot (for instance,

in reaction to node crashes)?

To reason about safety under reconfiguration, we join all old and new quorum slice sets, reflecting the fact that nodes may make

decisions based on a combination of messages from different configuration eras. To be very conservative, we might require

quorum intersection of the aggregation of the present configuration with every past configuration. However, we can relax this

slightly by separating nodes that have sent illegal messages from those that have merely crashed.

THEOREM 13. Let ܂𝐕1,𝐐1܂,…,܂𝐕𝑘,𝐐𝑘܂ be the set of configurations an FBAS has experienced during agreement on a single

slot. Let 𝐕 = 𝐕1 Ȃ Ȃ Ȃ 𝐕𝑘 and 𝐐(𝑣) = {𝑞 Ȃ Ȃ𝑗 such that 𝑣 Ȃ 𝐕𝑗 Ȃ 𝑞 Ȃ 𝐐𝑗(𝑣)}. Let 𝐵 Ȃ 𝐕 be a set such that 𝐵 contains all

illbehaved nodes that have sent illegal messages, though 𝐕 ं 𝐵 may still contain crashed (unresponsive) nodes.

Suppose nodes 𝑣1 and 𝑣2 are well-behaved, 𝑣1 externalizes 𝑥1 for the slot, and 𝑣2 externalizes 𝑥2. If ܂𝐕,𝐐܂𝐵 enjoys

quorum intersection, then 𝑥1 = 𝑥2.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 35

PROOF. For 𝑣1 to externalize 𝑥1, it must have ratified accept(commit ܂𝑛1,𝑥1܂) in collaboration with a pseudo-quorum 𝑈1 Ȃ 𝐕. We say

pseudo-quorum because 𝑈1 might not be a quorum in ܂𝐕𝑗,𝐐𝑗܂ for any particular 𝑗, as ratification may have involved messages

spanning multiple configurations. Nonetheless, for ratification to succeed Ȃ𝑣 Ȃ 𝑈1,Ȃ𝑗,Ȃ𝑞 Ȃ 𝐐𝑗(𝑣) such that 𝑞 Ȃ 𝑈1. It follows from

the construction of 𝐐 that 𝑞 Ȃ 𝐐(𝑣). Hence 𝑈1 is a quorum in ܂𝐕,𝐐܂. By a similar argument a pseudo-quorum 𝑈2 must have ratified

accept(commit ܂𝑛2,𝑥2܂), and 𝑈2 must be a quorum in ܂𝐕,𝐐܂. By quorum intersection of ܂𝐕,𝐐܂𝐵, there must exist some 𝑣 Ȃ 𝐕 ं 𝐵

such that 𝑣 Ȃ 𝑈1 Ȃ 𝑈2. By assumption, such a 𝑣 Ȃ 𝐵 could not claim to accept incompatible ballots. Since 𝑣 confirmed accepting

commit for ballots with both 𝑥1 and 𝑥2, it must be that 𝑥1 = 𝑥2.

For liveness of a node 𝑣, we care about several things when an FBAS has undergone a series of reconfigurations ܂𝐕1,𝐐1܂,…,܂𝐕𝑘,𝐐𝑘

 within a single slot. First, the safety prerequisites of Theorem 13 must hold for 𝑣 and the set of nodes 𝑣 cares about, since܂

violating safety undermines liveness and Theorem 11 requires quorum intersection. Second, the set of ill-behaved nodes in the

latest state, ܂𝐕𝑘,𝐐𝑘܂, must not be 𝑣-blocking, as this could deny 𝑣 a quorum and prevent it from ratifying statements. Finally, 𝑣’s

state must never have been poisoned by a 𝑣-blocking set falsely claiming to accept a statement.

To summarize, then, if 𝐵 is the set of nodes that have sent illegal messages, we consider a node 𝑣 to be cumulatively intact

when the following conditions hold:

(1) 𝑣 is intact in the latest configuration ܂𝐕𝑘,𝐐𝑘܂,

(2) The aggregation of the present and all past configurations has quorum intersection despite 𝐵 (i.e., the prerequisite for
Theorem 13 holds), and

(3) 𝐵 is not 𝑣-blocking in ܂𝐕𝑗,𝐐𝑗܂ for any 1 Ȃ 𝑗 Ȃ 𝑘.

The next few theorems show that ill-behaved nodes cannot drive intact nodes into dead-end stuck states:

 THEOREM 14. In an FBAS with quorum intersection, if no intact node is in the
EXTERNALIZE phase and an intact node with ballot ܂𝑛,𝑥 ܂ arms its timer as described in Section 6.2.2, then, given

sufficient communication, every intact node 𝑣 can set 𝑏𝑣 Ȃ 𝑛 before any timer fires.

PROOF. Let 𝑆 = {𝑣 Ȃ 𝑏𝑣 Ȃ 𝑛} be the set of nodes with counters at least 𝑛. By assumption, 𝑆 contains an intact node. Furthermore,

because that intact node armed its timer, 𝑆 must also encompass a quorum. Let 𝑆+ be the intact subset of 𝑆, and 𝑆− be the set of

intact nodes not in 𝑆. By Theorem 10, either 𝑆− = ∅ (in which case the theorem is trivial), or 𝑆+ is 𝑣-blocking for some 𝑣 Ȃ 𝑆. By

step 9 on page 24, 𝑣 will adjust its ballot so 𝑏𝑣.𝑛 Ȃ 𝑛. At this point, repeat the argument with 𝑆 Ă 𝑆 Ȃ {𝑣} until such point as 𝑆− = ∅.

THEOREM 15. Given long enough timeouts, if an intact node has reached the CONFIRM phase with 𝑏.𝑥 = 𝑥, then
eventually all intact nodes will terminate.

PROOF. If an intact node has reached the EXTERNALIZE phase, it has confirmed commit 𝑐 for some ballot 𝑐. By Theorem 11, all intact

nodes will confirm commit 𝑐, after which they will terminate in step 7 on page 24.

Otherwise, an intact node in the CONFIRM phase has accepted commit 𝑐 where 𝑐 = ܂𝑛,𝑥܂. Beforehand, an intact node confirmed 𝑐

was prepared. By Theorem 11, all intact nodes will eventually have Ă Ȃ 𝑐. Moreover, by Theorem 8, no intact node 𝑣 can accept

abort 𝑐, so no intact node can accept as prepared any ballot 𝑝 such that 𝑝 Ȃ 𝑐. Hence, after sufficient communication, every

intact node will permanently have Ă Ȃ 𝑐. The intact node or nodes with the lowest 𝑏 will, by Theorem 14, raise their ballots until

such point as all intact nodes with armed timers have the same ballot counter. Since they also have identical 𝑧 = Ă.𝑥 = 𝑥, they will

all have the same ballot. If they cannot complete the protocol because one or more intact nodes have higher ballots, the nodes

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 36

with higher numbered ballots will not have timers set. Hence, the nodes with lowernumbered ballots will after a timeout set set

𝑏 Ă ܂𝑏.𝑛 + 1,𝑥 ܂ until eventually all intact nodes are on the same ballot and can complete the protocol

THEOREM 16. Regardless of past ill-behavior, given long enough timeouts and periods in which ill-behaved nodes do
not send new messages, intact nodes running SCP will terminate.

PROOF. By Theorem 12, all intact nodes will eventually have identical sets 𝑍 of candidate values. Assume this point has passed and

every intact node 𝑣 has the same composite value 𝑧 = combine(𝑍). If no intact node ever confirms any ballot 𝑏 prepared without

𝑏.𝑥 = 𝑧, then after at most one timeout, all new ballots of intact nodes will have value 𝑧 and, given a sufficient timeout, complete

the protocol. By Theorem 15, nodes will also complete if any intact node has progressed beyond the PREPARE phase.

The remaining case is that an intact node has Ă Ȃ 𝟎 and all intact nodes have 𝜑 =

PREPARE. By Theorem 14, when the intact node or nodes with the highest 𝑏.𝑛 arm their timers, if timers are long enough, other

nodes will catch up. Moreover, by Theorem 11, if timers are long enough, nodes will converge on the value of Ă (the highest

confirmed prepared ballot) before the next timeout, at which point all intact nodes will raise 𝑏 to the same value and complete

the protocol.

Theorem 16 assures us there are no dead-end states in SCP. However, a set of illbehaved nodes with very good timing could

perpetually preempt an SCP system by delaying messages so that some fraction of intact nodes update Ă right before timers fire

and the remaining update it after, preventing intact nodes from converging on the next ballot. Nodes can recover from such an

attack by removing ill-behaved nodes from their slices.

An alternative would be to add randomness to the protocol, for instance changing step 2 on page 24 to update 𝑧 with probability

1Ȃ2 (or even with probability proportional to the fraction of the timer remaining). Such an approach would terminate with

probability 1, but in worse expected running time for the common case that most or all nodes are well-behaved or fail-stop.

7. LIMITATIONS

SCP can only guarantee safety when nodes choose adequate quorum slices. Section 3.2 discusses why we can reasonably expect

them to do so. Nonetheless, when security depends upon a user-configurable parameter, there is always the possibility people

will set it wrong.

Even when people set quorum slices correctly and SCP guarantees safety, safety alone does not rule out other security issues

that may arise in a federated system. For example, in a financial market, widely trusted nodes could leverage their position in

the network to gain information with which to engage in front running or other unethical activities.

Byzantine nodes may attempt to filter transactions on the input side of SCP while otherwise producing the correct output. If

well-behaved nodes accept all transactions, the combine function takes the union of transactions, and there are intact nodes,

then such filtering will eventually fail to block victim transactions with probability 1, but may nonetheless impose delays.

Though SCP’s safety is optimal, its performance and communication latency are not. In the common case that nodes have not

previously voted to commit ballots incompatible with the current one, it is possible to reduce the number of communication

rounds by one. An earlier version of SCP did so, but the protocol description was more complex. First, it required nodes to cache

and retransmit signed messages previously sent by failed nodes. Second, it was no longer possible to gloss over the distinction

between votes and confirmations of abort statements in PREPARE messages, so nodes had to send around potentially unbounded

lists of exceptions to their abort votes.

SCP can suffer perpetual preemption as discussed in Section 6.3. An open question is whether, without randomness, a different

protocol could guarantee termination assuming bounded communication latency but tolerating Byzantine nodes that

continuously to inject bad messages at exactly the point where timeouts fire. Such a protocol is not ruled out by the FLP

impossibility result [Fischer et al. 1985]. However, the two main techniques to guarantee termination assuming synchrony do

not directly apply in the FBA model: PBFT [Castro and Liskov 1999] chooses a leader in round-robin fashion, which is not directly

applicable when nodes do not agree on membership. (Possibly something along the lines of priority in Section 6.1 could be

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 37

adapted.) The Byzantine Generals protocol [Lamport et al. 1982] relays messages so as to compensate for ill-behaved nodes

saying different things to different honest nodes, an approach that cannot help when nodes depend on distinct ill-behaved

nodes in their slices. Still another possibility might be to leverage both randomness and synchrony to terminate with probability

1, but in shorter expected time than Ben Or-style randomized protocols [Ben-Or 1983] that make no synchrony assumptions.

Public coin techniques [?] that speed up randomized centralized Byzantine agreement protocols appear to be difficult to adapt

to the federated model, barring some cryptographic breakthrough in federated threshold signatures.

Unfortunately, changing slices mid-slot to accommodate failed nodes is problematic for liveness if a well-behaved node 𝑣 has

ever experienced a wholly malicious and colluding 𝑣-blocking set. The good news is that Theorem 13 guarantees safety to any

set 𝑆 of well-behaved nodes enjoying quorum intersection despite 𝐕 ं 𝑆, even when 𝑆 has befouled members. The bad news is

that updating 𝐐 may be insufficient to unblock nodes if well-behaved nodes were tricked into voting to confirm a bad commit

message. In such a situation, nodes must disavow past votes, which they can do only by rejoining the system under a new node

names. There may exist a way to automate such recovery, such as having other nodes recognize reincarnated nodes and

automatically update their slices.

The FBA model requires continuity of participants over time. Should all nodes simultaneously and permanently leave, restarting

consensus would require central coordination or human-level agreement. By contrast, a proof-of-work system such as Bitcoin

could undergo sudden complete turnover yet continue to operate with little human intervention. On the other hand, if nodes do

return, an FBAS can recover from an arbitrarily long outage, while a proof-of-work scheme would face the possibility of an

attacker working on a fork during the outage.

An intriguing possibility is to leverage SCP to mediate tussles [Clark et al. 2005] by voting on changes to configuration parameters

or upgrades to an application protocol. One way to do this is to nominate special messages that update parameters. Candidate

values could then consist of both a set of values and a set of parameter updates. A big limitation of this approach is that a set of

malicious nodes large enough to deny the system a quorum but not large enough to undermine safety could nonetheless trigger

configuration changes by lying and putting configuration changes in 𝑌 that were never ratified. It remains an open question how

to vote on parameter changes in a way that requires the consent of a full quorum but also never jeopardizes liveness.

8. SUMMARY

Byzantine agreement has long enabled distributed systems to achieve consensus with efficiency, standard cryptographic

security, and flexibility in designating trusted participants. More recently, Bitcoin introduced the revolutionary notion of

decentralized consensus, leading to many new systems and research challenges. This paper introduces federated Byzantine

agreement (FBA), a model for achieving decentralized consensus while preserving the traditional benefits of Byzantine

agreement. The key distinction between FBA and prior Byzantine agreement systems is that FBA forms quorums from

participants’ individual trust decisions, allowing an organic growth model similar to that of the Internet. The Stellar Consensus

Protocol (SCP) is a construction for FBA that achieves optimal safety against ill-behaved participants.

Acknowledgments

Jed McCaleb inspired this work and provided feedback, terminology suggestions, and help thinking through numerous

conjectures. Jessica Collier collaborated on writing the paper. Stan Polu created the first implementation of SCP and provided

invaluable corrections, suggestions, simplifications, and feedback in the process. Jelle van den Hooff provided the key idea to

restructure the paper around quorum intersection and federated voting, as well as other crucial suggestions for terminology,

organization, and presentation. Nicolas Barry found several bugs in the paper as he implemented the protocol, as well as

identifying necessary clarifications. Ken Birman, Bekki Bolthouse, Joseph Bonneau, Mike Hamburg, Graydon Hoare, Joyce Kim,

Tim Makarios, Mark Moir, Robert Morris, Lucas Ryan, and Katherine Tom slogged through drafts of the paper, identifying errors

and sources of confusion as well as providing helpful suggestions. Eva Gantz provided helpful motivation and references. Winnie

Lim provided guidance on figures. The reddit community and Tahoe-LAFS group pointed out a censorship weakness in an earlier

version of SCP, leading to the improved nomination protocol. Finally, the author would like to thank the whole Stellar team for

their support, feedback, and encouragement.

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 38

Disclaimer

Professor Mazieres’s contribution to this publication was as a paid consultant, and was` not part of his Stanford University duties

or responsibilities.

REFERENCES

Eduardo A. Alchieri, Alysson Neves Bessani, Joni Silva Fraga, and Fab´ıola Greve. 2008. Byzantine Consensus with Unknown Participants. In Proceedings of the 12th

International Conference on Principles of Distributed Systems. 22–40.
James Aspnes. 2010. A Modular Approach to Shared-memory Consensus, with Applications to the Probabilistic-write Model. In Proceedings of the 29th Symposium on

Principles of Distributed Computing. 460–467.
Rachel Banning-Lover. 2015. Boatfuls of cash: how do you get money into fragile states? (February 2015). http://www.theguardian.com/global-development-professionals-

network/2015/feb/19/boatfulsof-cash-how-do-you-get-money-into-fragile-states.
David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and Pawel Szalachowski. 2014. ARPKI: Attack Resilient Public-Key Infrastructure. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security. 382–393.
Michael Ben-Or. 1983. Another Advantage of Free Choice (Extended Abstract): Completely Asynchronous Agreement Protocols. In Proceedings of the 2nd Symposium on

Principles of Distributed Computing. 27–30.
Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and Edward W. Felten. 2015. Research Perspectives and Challenges for Bitcoin and

Cryptocurrencies. In Proceedings of the 36th IEEE Symposium on Security and Privacy.
Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast Protocols. Journal of the ACM 32, 4 (Oct. 1985), 824–840.
Danny Bradbury. 2013. Feathercoin hit by massive attack. (June 2013). http://www.coindesk.com/feathercoin-hit-by-massive-attack/.
Vitalik Buterin. 2014. Slasher: A Punitive Proof-of-Stake Algorithm. (January 2014).

https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/.
Miguel Castro and Barbara Liskov. 1999. Practical byzantine fault tolerance. In Proceedings of the 3rd Symposium on Operating Systems Design and Implementation.

173–186.
CGAP. 2008. Making Money Transfers Work for Microfinance Institutions. (March 2008). http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-

Transfers-Workfor-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-MoneyTransfers-Mar-2008.pdf.
David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. 2005. Tussle in Cyberspace:

Defining Tomorrow’s Internet. IEEE/ACM Transactions on Networking 13, 3 (June 2005), 462–475.
crazyearner. 2013. TERRACOIN ATTACK OVER 1.2TH ATTACK CONFIRMD [sic]. (July 2013). https://bitcointalk.org/index.php?topic=261986.0.
Kourosh Davarpanah, Dan Kaufman, and Ophelie Pubellier. 2015. NeuCoin: the First Secure, Cost-efficient and Decentralized Cryptocurrency. (March 2015).

http://www.neucoin.org/en/whitepaper/download.
Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden. 2015. The Global Findex Database 2014 Measuring Financial Inclusion Around the

World. Policy Research Working Paper 7255.
World Bank. http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/

04/15/090224b082dca3aa/1_0/Rendered/PDF/The0Global0Fin0ion0around0the0world.pdf.
John R. Douceur. 2002. The Sybil Attack. In Revised Papers from the First International Workshop on Peer-to-Peer Systems. 251–260.
Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the Presence of Partial Synchrony. Journal of the ACM 35, 2 (April 1988), 288–323.
Cynthia Dwork and Moni Naor. 1992. Pricing via Processing or Combatting Junk Mail. In Proceedings of the 12th Annual International Cryptology Conference on

Advances in Cryptology. 139–147.
Ittay Eyal and Emin Gun Sirer. 2013. Majority is not Enough: Bitcoin Mining is Vulnerable. (November¨ 2013). http://arxiv.org/abs/1311.0243.
Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of Distributed Consensus with One Faulty Process. Journal of the ACM 32, 2 (April 1985), 374–

382.
Ghassan O. Karame, Elli Androulaki, and Srdjan Capkun. 2012. Double-spending fast payments in bitcoin. In Proceedings of the 2012 ACM conference on Computer and

communications security. 906–917.
Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perring, Collin Jackson, and Virgil Gligor. 2013. Accountable Key Infrastructure (AKI): A Proposal for a Public-key Validation

Infrastructure. In Proceedings of the 22nd International Conference on World Wide Web. 679–690.
Sunny King and Scott Nadal. 2012. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake. (August 2012). http://peercoin.net/assets/paper/peercoin-paper.pdf.
Jae Kwon. 2014. Tendermint: Consensus without Mining. (2014).

http://tendermint.com/docs/tendermint.pdf.
Leslie Lamport. 1998. The Part-Time Parliament. 16, 2 (May 1998), 133–169.
Leslie Lamport. 2011a. Brief Announcement: Leaderless Byzantine Paxos. In Proceedings of the 25th International Conference on Distributed Computing. 141–142.
Leslie Lamport. 2011b. Byzantizing Paxos by Refinement. In Proceedings of the 25th International Conference on Distributed Computing. 211–224.
Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals Problem. ACM Transactions on Programing Languages and Systems 4, 3 (July 1982),

382–401.
Adam Langley. 2015. Maintaining digital certificate security. (March 2015). http:

//googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html.
Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency. RFC 6962. Internet Engineering Task Force (IETF). http://tools.ietf.org/html/rfc6962.
Jinyuan Li and David Mazieres. 2007. Beyond One-third Faulty Replicas in Byzantine Fault Tolerant` Systems. In Proceedings of the 4th Symposium on Networked Systems

Design and Implementation. 131–144.
Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Michael J. Freedman, and Edward W. Felten. 2014.

CONIKS: A Privacy-Preserving Consistent Key Service for Secure End-to-End Communication.
Cryptology ePrint Archive, Report 2014/1004. (December 2014). http://eprint.iacr.org/2014/1004. Microsoft. 2013. Fraudulent Digital Certificates Could Allow Spoofing.

Microsoft Security Advisory

http://www.theguardian.com/global-development-professionals-network/2015/feb/19/boatfuls-of-cash-how-do-you-get-money-into-fragile-states
http://www.theguardian.com/global-development-professionals-network/2015/feb/19/boatfuls-of-cash-how-do-you-get-money-into-fragile-states
http://www.theguardian.com/global-development-professionals-network/2015/feb/19/boatfuls-of-cash-how-do-you-get-money-into-fragile-states
http://www.theguardian.com/global-development-professionals-network/2015/feb/19/boatfuls-of-cash-how-do-you-get-money-into-fragile-states
http://www.coindesk.com/feathercoin-hit-by-massive-attack/
http://www.coindesk.com/feathercoin-hit-by-massive-attack/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-Transfers-Mar-2008.pdf
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-Transfers-Mar-2008.pdf
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-Transfers-Mar-2008.pdf
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-Transfers-Mar-2008.pdf
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-Transfers-Mar-2008.pdf
https://bitcointalk.org/index.php?topic=261986.0
https://bitcointalk.org/index.php?topic=261986.0
http://www.neucoin.org/en/whitepaper/download
http://www.neucoin.org/en/whitepaper/download
http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/04/15/090224b082dca3aa/1_0/Rendered/PDF/The0Global0Fin0ion0around0the0world.pdf
http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/04/15/090224b082dca3aa/1_0/Rendered/PDF/The0Global0Fin0ion0around0the0world.pdf
http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/04/15/090224b082dca3aa/1_0/Rendered/PDF/The0Global0Fin0ion0around0the0world.pdf
http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/04/15/090224b082dca3aa/1_0/Rendered/PDF/The0Global0Fin0ion0around0the0world.pdf
http://arxiv.org/abs/1311.0243
http://arxiv.org/abs/1311.0243
http://peercoin.net/assets/paper/peercoin-paper.pdf
http://peercoin.net/assets/paper/peercoin-paper.pdf
http://tendermint.com/docs/tendermint.pdf
http://tendermint.com/docs/tendermint.pdf
http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
http://tools.ietf.org/html/rfc6962
http://tools.ietf.org/html/rfc6962
http://eprint.iacr.org/2014/1004
http://eprint.iacr.org/2014/1004

 GLOBAL UNCONDITIONAL BASIC INCOME WHITE PAPER
 __

Easy Life Community & Blockchain Network Mario Eduard Giovanelli August 2020 39

2798897. (January 2013). https://technet.microsoft.com/en-us/library/security/2798897.aspx.
Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

http://bitcoin.org/bitcoin.pdf.
National Institute of Standards and Technology. 2012. Secure Hash Standard (SHS). Federal Information Processing Standards Publication 180-4.

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.
William B. Norton. 2010. The Art of Peering: The Peering Playbook. (August 2010).

http://drpeering.net/white-papers/Art-Of-Peering-The-Peering-Playbook.html.
Karl J. O’Dwyer and David Malone. 2014. Bitcoin Mining and its Energy Footprint. In Irish Signals and Systems Conference. Limerick, Ireland, 280–285.
Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication: A New Primary Copy Method to Support Highly-Available Distributed Systems. In Proceedings of the 7th

Symposium on Principles of Distributed Computing. 8–17.
Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In 2014 USENIX Annual Technical Conference. 305–319.
Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching Agreement in the Presence of Faults. Journal of the ACM 27, 2 (April 1980), 228–234.
Claire Provost. 2013. Why do Africans pay the most to send money home? (January 2013).

http://www.theguardian.com/global-development/2013/jan/30/africans-pay-most-send-money.
David Schwartz, Noah Youngs, and Arthur Britto. 2014. The Ripple Protocol Consensus Algorithm. (2014). https://ripple.com/files/ripple_consensus_whitepaper.pdf.
Dale Skeen and Michael Stonebraker. 1983. A Formal Model of Crash Recovery in a Distributed System. IEEE Transactions on Software Engineering 9, 3 (May 1983), 219–

228.
Robbert van Renesse, Nicolas Schiper, and Fred B. Schneider. 2014. Vive la Difference: Paxos vs.´ Viewstamped Replication vs. Zab. IEEE Transactions on Dependable and

Secure Computing (September 2014).
A. GLOSSARY OF NOTATION

Notation Name Definition

iff An abbreviation of “if and only if”

𝑓 Ȃ 𝐴 Ă 𝐵 function Function 𝑓 maps each element of set 𝐴 to a result in set 𝐵.

𝑓(𝑥) application The result of calculating function 𝑓 on argument 𝑥

𝑎̀ complement An overbar connotes the opposite, i.e., 𝑎̀ is the opposite of 𝑎.

 tuple A structure (compound value) with field values 𝑎1,…,𝑎𝑛 ܂𝑎1,…,𝑎𝑛܂

𝐴 Ȃ 𝐵 logical and Both 𝐴 and 𝐵 are true.

𝐴 Ȃ 𝐵 logical or At least one, possibly both, of 𝐴 and 𝐵 are true.

Ȃ𝑒,𝐶(𝑒) there exists There is at least one value 𝑒 for which condition 𝐶(𝑒) is true.

Ȃ𝑒,𝐶(𝑒) for all 𝐶(𝑒) is true of every value 𝑒.

{𝑎,𝑏,…} set A set containing the listed elements (𝑎,𝑏,…)

{𝑒 Ȃ 𝐶(𝑒)} set-builder The set of all elements 𝑒 for which 𝐶(𝑒) is true

∅ empty set The set containing no elements

|𝑆|

𝑒 Ȃ 𝑆

cardinality

element of
The number of elements in set 𝑆 Element 𝑒 is

a member of set 𝑆.

𝐴 Ȃ 𝐵 subset Every member of set 𝐴 is also a member of set 𝐵.

𝐴 ਂ 𝐵 strict subset 𝐴 Ȃ 𝐵 and 𝐴 Ȃ 𝐵.

2𝐴 powerset The set of sets containing every possible combination of members of 𝐴, i.e., 2𝐴 =

{𝐵 Ȃ 𝐵 Ȃ 𝐴}

𝐴 Ȃ 𝐵 union The set containing all elements that are members of 𝐴 or members of 𝐵, i.e., 𝐴 Ȃ

𝐵 = {𝑒 Ȃ 𝑒 Ȃ 𝐴 Ȃ 𝑒 Ȃ 𝐵 }

𝐴 Ȃ 𝐵 intersection The set containing all elements that are members of both 𝐴 and 𝐵, i.e., 𝐴 Ȃ 𝐵 =

{𝑒 Ȃ 𝑒 Ȃ 𝐴 Ȃ 𝑒 Ȃ 𝐵 }

𝐴 ं 𝐵 set difference The set containing every element of 𝐴 that is not a member of 𝐵, i.e., 𝐴 ं 𝐵 =

{𝑒 Ȃ 𝑒 Ȃ 𝐴 Ȃ 𝑒 Ȃ 𝐵 }

̀ not Negates a symbol’s meaning. E.g., 𝑒 Ȃ 𝐴 means 𝑒 Ȃ 𝐴 is false, while Ȃ𝑒,𝐶(𝑒)

means no 𝑒 exists such that 𝐶(𝑒) is true.

https://technet.microsoft.com/en-us/library/security/2798897.aspx
https://technet.microsoft.com/en-us/library/security/2798897.aspx
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://drpeering.net/white-papers/Art-Of-Peering-The-Peering-Playbook.html
http://drpeering.net/white-papers/Art-Of-Peering-The-Peering-Playbook.html
http://www.theguardian.com/global-development/2013/jan/30/africans-pay-most-send-money
http://www.theguardian.com/global-development/2013/jan/30/africans-pay-most-send-money
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf

